• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.024 seconds

Evaluation of Environmental Factors to Determine the Distribution of Functional Feeding Groups of Benthic Macroinvertebrates Using an Artificial Neural Network

  • Park, Young-Seuk;Lek, Sovan;Chon, Tae-Soo;Verdonschot, Piet F.M.
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.233-241
    • /
    • 2008
  • Functional feeding groups (FFGs) of benthic macroinvertebrates are guilds of invertebrate taxa that obtain food in similar ways, regardless of their taxonomic affinities. They can represent a heterogeneous assemblage of benthic fauna and may indicate disturbances of their habitats. The proportion of different groups can change in response to disturbances that affect the food base of the system, thereby offering a means of assessing disruption of ecosystem functioning. In this study, we used benthic macroinvertebrate communities collected at 650 sites of 23 different water types in the province of Overijssel, The Netherlands. Physical and chemical environmental factors were measured at each sampling site. Each taxon was assigned to its corresponding FFG based on its food resources. A multilayer perceptron (MLP) using a backpropagation algorithm, a supervised artificial neural network, was applied to evaluate the influence of environmental variables to the FFGs of benthic macroinvertebrates through a sensitivity analysis. In the evaluation of input variables, the sensitivity analysis with partial derivatives demonstrates the relative importance of influential environmental variables on the FFG, showing that different variables influence the FFG in various ways. Collector-filterers and shredders were mainly influenced by $Ca^{2+}$ and width of the streams, and scrapers were influenced mostly with $Ca^{2+}$ and depth, and predators were by depth and pH. $Ca^{2+}$ and depth displayed relatively high influence on all four FFGs, while some variables such as pH, %gravel, %silt, and %bank affected specific groups. This approach can help to characterize community structure and to ecologically assess target ecosystems.

Study on Anti-thrombotic Activity, Superoxide Generation in Human Neutrophils and Platelet Aggregation in Human Blood of Hwao-tang

  • Park Won Hwan;Park Soo Young;Park Tae Woo;Kim Jong Gu;Kim Seog Ha;Kim Cherl Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1494-1504
    • /
    • 2004
  • The present paper reports the effects of Hwaotang an atherosclerosis using a spontaneous experimental model, We have also investigated the pharmacological effect of Hwaotang on collagen- and ADP-induced blood platelet aggregation, thrombin-induced conversion of fibrinogen and fibrinolysis in in vitro experiments, and various effects on stimuli-induced superoxide generation in human neutrophils. Hwao-tang was shown to have inhibitory effect on collagen- and ADP-induced blood platelet aggregation, on thrombin-induced conversion of fibrinogen to fibrin and on the activity of plasminogen or plasmin. Hwao-tang also significantly inhibited fMLP-induced superoxide generation in a concentration-dependent manner, but not that induced by arachidonic acid. Hwao-tang inhibited neutrophil functions, including degranulation, superoxide generation, and leukotriene B4 production, without any effect on 5-lipoxygenase activity. In conclusion, the protection of extracts of Hwao-tang on the ischemic infarction induced artificially might be involved to their inhibition of thrombotic action. The results also indicate that Hwao-tang exerts the effects on superoxide generation related to the inhibition of neutrophil functions.

A Neural Metwork's FPGA Realization using Gate Level Structure (게이트레벨 연산구조를 사용한 신경합의 FPGA구현)

  • Lee, Yun-Koo;Jeong, Hong
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.3
    • /
    • pp.257-269
    • /
    • 2001
  • Because of increasing number of integrated circuit, there is many tries of making chip of neural network and some chip is exit. but this is not prefer because YLSI technology can't support so large hardware. So imitation of whole system of neural network is more prefer. There is common procedure in signal processing as in the neural network and pattern recognition. That is multiplication of large amount of signal and reading LUT. This is identical with some operation of MLP, and need iterative and large amount of calculation, so if we make this part with hardware, overall system's velocity will be improved. So in this paper, we design neutral network, not neuron which can be used to many other fields. We realize this part by following separated bits addition method, and it can be appled in the real time parallel process processing.

  • PDF

A Study on the Spoken Korean Citynames Using Multi-Layered Perceptron of Back-Propagation Algorithm (오차 역전파 알고리즘을 갖는 MLP를 이용한 한국 지명 인식에 대한 연구)

  • Song, Do-Sun;Lee, Jae-Gheon;Kim, Seok-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.5-14
    • /
    • 1994
  • This paper is about an experiment of speaker-independent automatic Korean spoken words recognition using Multi-Layered Perceptron and Error Back-propagation algorithm. The object words are 50 citynames of D.D.D local numbers. 43 of those are 2 syllables and the rest 7 are 3 syllables. The words were not segmented into syllables or phonemes, and some feature components extracted from the words in equal gap were applied to the neural network. That led independent result on the speech duration, and the PARCOR coefficients calculated from the frames using linear predictive analysis were employed as feature components. This paper tried to find out the optimum conditions through 4 differerent experiments which are comparison between total and pre-classified training, dependency of recognition rate on the number of frames and PAROCR order, recognition change due to the number of neurons in the hidden layer, and the comparison of the output pattern composition method of output neurons. As a result, the recognition rate of $89.6\%$ is obtaimed through the research.

  • PDF

Recognition of Restricted Continuous Korean Speech Using Perceptual Model (인지 모델을 이용한 제한된 한국어 연속음 인식)

  • Kim, Seon-Il;Hong, Ki-Won;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.61-70
    • /
    • 1995
  • In this paper, the PLP cepstrum which is close to human perceptual characteristics was extracted through the spread time area to get the temperal feature. Phonemes were recognized by artificial neural network similar to the learning method of human. The phoneme strings were matched by Markov models which well suited for sequence. Phoneme recognition for the continuous Korean speech had been done using speech blocks in which speech frames were gathered with unequal numbers. We parameterized the blocks using 7th order PLPs, PTP, zero crossing rate and energy, which neural network used as inputs. The 100 data composed of 10 Korean sentences which were taken from the speech two men pronounced five times for each sentence were used for the the recognition. As a result, maximum recognition rate of 94.4% was obtained. The sentence was recognized using Markov models generated by the phoneme strings recognized from earlier results the recognition for the 200 data which two men sounded 10 times for each sentence had been carried out. The sentence recognition rate of 92.5% was obtained.

  • PDF

Ovarian Cancer Microarray Data Classification System Using Marker Genes Based on Normalization (표준화 기반 표지 유전자를 이용한 난소암 마이크로어레이 데이타 분류 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2032-2037
    • /
    • 2011
  • Marker genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect marker genes that are selected by ranking genes according to statistics after normalizing data with methods that are the most widely used among several normalization methods proposed the while, And it compare and analyze a performance of each of normalization methods with mult-perceptron neural network layer. The Result that apply Multi-Layer perceptron algorithm at Microarray data set including eight of marker gene that are selected using ANOVA method after Lowess normalization represent the highest classification accuracy of 99.32% and the lowest prediction error estimate.

Postal Envelope Image Recognition System for Postal Automation (서장 우편물 자동처리를 위한 우편영상 인식 시스템)

  • Kim, Ho-Yon;Lim, Kil-Taek;Kim, Doo-Sik;Nam, Yun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.429-442
    • /
    • 2003
  • In this paper, we describe an address image recognition system for automatic processing of standard- size letter mail. The inputs to the system are gray-level mail piece images and the outputs are delivery point codes with which a delivery sequence of carrier can be generated. The system includes five main modules; destination address block location, text line separation, character segmentation, character recognition and finally address interpretation. The destination address block is extracted on the basis of experimental knowledge and the line separation and character segmentation is done through the analysis of connected components and vortical runs. For recognizing characters, we developed MLP-based recognizers and dynamical programming technique for interpretation. Since each module has been implemented in an independent way, the system has a benefit that the optimization of each module is relatively easy. We have done the experiment with live mail piece images directly sampled from mail sorting machine in Yuseong post office. The experimental results prove the feasibility of our system.

Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm

  • Chatterjee, Sankhadeep;Sarkar, Sarbartha;Hore, Sirshendu;Dey, Nilanjan;Ashour, Amira S.;Shi, Fuqian;Le, Dac-Nhuong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.

Image Classification Approach for Improving CBIR System Performance (콘텐트 기반의 이미지검색을 위한 분류기 접근방법)

  • Han, Woo-Jin;Sohn, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.816-822
    • /
    • 2016
  • Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.

Recognition of characters on car number plate and best recognition ratio among their layers using Multi-layer Perceptron (다중퍼셉트론을 이용한 자동차 번호판의 최적 입출력 노드의 비율 결정에 관한 연구)

  • Lee, Eui-Chul;Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The Car License Plate Recognition(: CLPR) is required in searching the hit-and-run car, measuring the traffic density, investigating the traffic accidents as well as in pursuing vehicle crimes according to the increasing in number of vehicles. The captured images on the real environment of the CLPR is contaminated not only by snow and rain, illumination changes, but also by the geometrical distortion due to the pose changes between camera and car at the moment of image capturing. We propose homographic transformation and intensity histogram of vertical image projection so as to transform the distorted input to the original image and cluster the character and number, respectively. Especially, in this paper, the Multilayer Perceptron Algorithm(: MLP) in the CLPR is used to not only recognize the charcters and car license plate, but also determine the optimized ratio among the number of input, hidden and output layers by the real experimental result.