• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.023 seconds

Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model (다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할)

  • Kim, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.40-48
    • /
    • 2007
  • This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.

3D Wave Propagation Loss Modeling in Mobile Communication using MLP's Function Approximation Capability (MLP의 함수근사화 능력을 이용한 이동통신 3차원 전파 손실 모델링)

  • Yang, Seo-Min;Lee, Hyeok-Jun
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.10
    • /
    • pp.1143-1155
    • /
    • 1999
  • 셀룰러 방식의 이동통신 시스템에서 전파의 유효신호 도달범위를 예측하기 위해서는 전파전파 모델을 이용한 예측기법이 주로 사용된다. 그러나, 전파과정에서 주변 지형지물에 의해 발생하는 전파손실은 매우 복잡한 비선형적인 특성을 가지며 수식으로는 정확한 표현이 불가능하다. 본 논문에서는 신경회로망의 함수 근사화 능력을 이용하여 전파손실 예측모델을 생성하는 방법을 제안한다. 즉, 전파손실을 송수신 안테나간의 거리, 송신안테나의 특성, 장애물 투과영향, 회절특성, 도로, 수면에 의한 영향 등과 같은 전파환경 변수들의 함수로 가정하고, 신경회로망 학습을 통하여 함수를 근사화한다. 전파환경 변수들이 신경회로망 입력으로 사용되기 위해서는 3차원 지형도와 벡터지도를 이용하여 전파의 반사, 회절, 산란 등의 물리적인 특성이 고려된 특징 추출을 통해 정량적인 수치들을 계산한다. 이와 같이 얻어진 훈련데이타를 이용한 신경회로망 학습을 통해 전파손실 모델을 완성한다. 이 모델을 이용하여 서울 도심 지역의 실제 서비스 환경에 대한 타 모델과의 비교실험결과를 통해 제안하는 모델의 우수성을 보인다.Abstract In cellular mobile communication systems, wave propagation models are used in most cases to predict cell coverage. The amount of propagation loss induced by the obstacles in the propagation path, however, is a highly non-linear function, which cannot be easily represented mathematically. In this paper, we introduce the method of producing propagation loss prediction models by function approximation using neural networks. In this method, we assume the propagation loss is a function of the relevant parameters such as the distance from the base station antenna, the specification of the transmitter antenna, obstacle profile, diffraction effect, road, and water effect. The values of these parameters are produced from the field measurement data, 3D digital terrain maps, and vector maps as its inputs by a feature extraction process, which takes into account the physical characteristics of electromagnetic waves such as reflection, diffraction and scattering. The values produced are used as the input to the neural network, which are then trained to become the propagation loss prediction model. In the experimental study, we obtain a considerable amount of improvement over COST-231 model in the prediction accuracy using this model.

Performance Improvement of Automatic Basal Cell Carcinoma Detection Using Half Hanning Window (Half Hanning 윈도우 전처리를 통한 기저 세포암 자동 검출 성능 개선)

  • Park, Aa-Ron;Baek, Seong-Joong;Min, So-Hee;You, Hong-Yoen;Kim, Jin-Young;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.105-112
    • /
    • 2006
  • In this study, we propose a simple preprocessing method for classification of basal cell carcinoma (BCC), which is one of the most common skin cancer. The preprocessing step consists of data clipping with a half Hanning window and dimension reduction with principal components analysis (PCA). The application of the half Hanning window deemphasizes the peak near $1650cm^{-1}$ and improves classification performance by lowering the false negative ratio. Classification results with various classifiers are presented to show the effectiveness of the proposed method. The classifiers include maximum a posteriori probability (MAP), k-nearest neighbor (KNN), probabilistic neural network (PNN), multilayer perceptron(MLP), support vector machine (SVM) and minimum squared error (MSE) classification. Classification results with KNN involving 216 spectra preprocessed with the proposed method gave 97.3% sensitivity, which is very promising results for automatic BCC detection.

  • PDF

A study on performance improvement of neural network using output probability of HMM (HMM의 출력확률을 이용한 신경회로망의 성능향상에 관한 연구)

  • Pyo Chang Soo;Kim Chang Keun;Hur Kang In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • In this paper, the hybrid system of HMM and neural network is proposed and show better recognition rate of the post-process procedure which minimizes the process error of recognition than that of HMM(Hidden Markov Model) only used. After the HMM training by training data, testing data that are not taken part in the training are sent to HMM. The output probability from HMM output by testing data is used for the training data of the neural network, post processor. After neural network training, the hybrid system is completed. This hybrid system makes the recognition rate improvement of about $4.5\%$ in MLP and about $2\%$ in RBFN and gives the solution to training time of conventional hybrid system and to decrease of the recognition rate due to the lack of training data in real-time speech recognition system.

  • PDF

An Optimal Driving Support Strategy(ODSS) for Autonomous Vehicles based on an Genetic Algorithm

  • Son, SuRak;Jeong, YiNa;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5842-5861
    • /
    • 2019
  • A current autonomous vehicle determines its driving strategy by considering only external factors (Pedestrians, road conditions, etc.) without considering the interior condition of the vehicle. To solve the problem, this paper proposes "An Optimal Driving Support Strategy(ODSS) based on an Genetic Algorithm for Autonomous Vehicles" which determines the optimal strategy of an autonomous vehicle by analyzing not only the external factors, but also the internal factors of the vehicle(consumable conditions, RPM levels etc.). The proposed ODSS consists of 4 modules. The first module is a Data Communication Module (DCM) which converts CAN, FlexRay, and HSCAN messages of vehicles into WAVE messages and sends the converted messages to the Cloud and receives the analyzed result from the Cloud using V2X. The second module is a Data Management Module (DMM) that classifies the converted WAVE messages and stores the classified messages in a road state table, a sensor message table, and a vehicle state table. The third module is a Data Analysis Module (DAM) which learns a genetic algorithm using sensor data from vehicles stored in the cloud and determines the optimal driving strategy of an autonomous vehicle. The fourth module is a Data Visualization Module (DVM) which displays the optimal driving strategy and the current driving conditions on a vehicle monitor. This paper compared the DCM with existing vehicle gateways and the DAM with the MLP and RF neural network models to validate the ODSS. In the experiment, the DCM improved a loss rate approximately by 5%, compared with existing vehicle gateways. In addition, because the DAM improved computation time by 40% and 20% separately, compared with the MLP and RF, it determined RPM, speed, steering angle and lane changes faster than them.

Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier (Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템)

  • Ohn, Syng-Yup;Chi, Seung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.

Performance Comparison for Radar Target Classification of Monostatic RCS and Bistatic RCS (모노스태틱 RCS와 바이스태틱 RCS의 표적 구분 성능 분석)

  • Lee, Sung-Jun;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1460-1466
    • /
    • 2010
  • In this paper, we analyzed the performance of radar target classification using the monostatic and bistatic radar cross section(RCS) for four different wire targets. Short time Fourier transform(STFT) and continuous wavelet transform (CWT) were used for feature extraction from the monostatic RCS and the bistatic RCS of each target, and a multi-layered perceptron(MLP) neural network was used as a classifier. Results show that CWT yields better performance than STFT for both the monostatic RCS and the bistatic RCS. And, when STFT was used, the performance of the bistatic RCS was slightly better than that of the monostatic RCS. However, when CWT was used, the performance of the monostatic RCS was slightly better than that of the bistatic RCS. Resultingly, it is proven that bistatic RCS is a good cadndidate for application to radar target classification in combination with a monostatic RCS.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Sonar Target Classification using Generalized Discriminant Analysis (일반화된 판별분석 기법을 이용한 능동소나 표적 식별)

  • Kim, Dong-wook;Kim, Tae-hwan;Seok, Jong-won;Bae, Keun-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.125-130
    • /
    • 2018
  • Linear discriminant analysis is a statistical analysis method that is generally used for dimensionality reduction of the feature vectors or for class classification. However, in the case of a data set that cannot be linearly separated, it is possible to make a linear separation by mapping a feature vector into a higher dimensional space using a nonlinear function. This method is called generalized discriminant analysis or kernel discriminant analysis. In this paper, we carried out target classification experiments with active sonar target signals available on the Internet using both liner discriminant and generalized discriminant analysis methods. Experimental results are analyzed and compared with discussions. For 104 test data, LDA method has shown correct recognition rate of 73.08%, however, GDA method achieved 95.19% that is also better than the conventional MLP or kernel-based SVM.

A Computational Intelligence Based Online Data Imputation Method: An Application For Banking

  • Nishanth, Kancherla Jonah;Ravi, Vadlamani
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.633-650
    • /
    • 2013
  • All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.