• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.024 seconds

Mobile Automatic Conversion System using MLP (다층신경망을 이용한 모바일 자동 변환 시스템)

  • Han, Eun-Jung;Jang, Chang-Hyuk;Jung, Kee-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.272-280
    • /
    • 2009
  • The recent mobile industry is providing of a lot of image on/off-line contents are being converted into the mobile contents for architectural design. However, it is difficult to provide users with the existing on/off-line contents without any considerations due to the small size of the mobile screen. In existing methods to overcome the problem, the comic contents on mobile devices are manually produced by computer software such as Photoshop. In this paper, I describe the Automatic Comics Conversion(ACC) system that provides the variedly form of offline comic contents into mobile device of the small screen using Multi-Layer Perceptorn(MLP). ACC produces an experience together with the comic contents fitting for the small screen, which introduces a clustering method that is useful for variety types of comic images and characters as a prerequisite as a stage for preserving semantic meaning. An application is to use the frame form of pictures, website and images in order into mobile device the availability and can bounce back the freeze images contents into dynamic images content.

  • PDF

Adaptive Blocking Artifacts Reduction in Block-Coded Images Using Block Classification and MLP (블록 분류와 MLP를 이용한 블록 부호화 영상에서의 적응적 블록화 현상 제거)

  • Kwon, Kee-Koo;Kim, Byung-Ju;Lee, Suk-Hwan;Lee, Jong-Won;Kwon, Seong-Geun;Lee, Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.399-407
    • /
    • 2002
  • In this paper, a novel algorithm is proposed to reduce the blocking artifacts of block-based coded images by using block classification and MLP. In the proposed algorithm, we classify the block into four classes based on a characteristic of DCT coefficients. And then, according to the class information of neighborhood block, adaptive neural network filter is performed in horizontal and vertical block boundary. That is, for smooth region, horizontal edge region, vertical edge region, and complex region, we use a different two-layer neural network filter to remove blocking artifacts. Experimental results show that the proposed algorithm gives better results than the conventional algorithms both subjectively and objectively.

Comparative Analysis on Error Back Propagation Learning and Layer By Layer Learning in Multi Layer Perceptrons (다층퍼셉트론의 오류역전파 학습과 계층별 학습의 비교 분석)

  • 곽영태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1044-1051
    • /
    • 2003
  • This paper surveys the EBP(Error Back Propagation) learning, the Cross Entropy function and the LBL(Layer By Layer) learning, which are used for learning the MLP(Multi Layer Perceptrons). We compare the merits and demerits of each learning method in the handwritten digit recognition. Although the speed of EBP learning is slower than other learning methods in the initial learning process, its generalization capability is better. Also, the speed of Cross Entropy function that makes up for the weak points of EBP learning is faster than that of EBP learning. But its generalization capability is worse because the error signal of the output layer trains the target vector linearly. The speed of LBL learning is the fastest speed among the other learning methods in the initial learning process. However, it can't train for more after a certain time, it has the lowest generalization capability. Therefore, this paper proposes the standard of selecting the learning method when we apply the MLP.

Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest (랜덤 포레스트 분류기 기반의 컨벌루션 뉴럴 네트워크를 이용한 속도제한 표지판 인식)

  • Lee, EunJu;Nam, Jae-Yeal;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.938-949
    • /
    • 2015
  • In this paper, we propose a robust speed-limit sign recognition system which is durable to any sign changes caused by exterior damage or color contrast due to light direction. For recognition of speed-limit sign, we apply CNN which is showing an outstanding performance in pattern recognition field. However, original CNN uses multiple hidden layers to extract features and uses fully-connected method with MLP(Multi-layer perceptron) on the result. Therefore, the major demerit of conventional CNN is to require a long time for training and testing. In this paper, we apply randomly-connected classifier instead of fully-connected classifier by combining random forest with output of 2 layers of CNN. We prove that the recognition results of CNN with random forest show best performance than recognition results of CNN with SVM (Support Vector Machine) or MLP classifier when we use eight speed-limit signs of GTSRB (German Traffic Sign Recognition Benchmark).

Deep Learning based BER Prediction Model in Underwater IoT Networks (딥러닝 기반의 수중 IoT 네트워크 BER 예측 모델)

  • Byun, JungHun;Park, Jin Hoon;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.41-48
    • /
    • 2020
  • The sensor nodes in underwater IoT networks have practical limitations in power supply. Thus, the reduction of power consumption is one of the most important issues in underwater environments. In this regard, AMC(Adaptive Modulation and Coding) techniques are used by using the relation between SNR and BER. However, according to our hands-on experience, we observed that the relation between SNR and BER is not that tight in underwater environments. Therefore, we propose a deep learning based MLP classification model to reflect multiple underwater channel parameters at the same time. It correctly predicts BER with a high accuracy of 85.2%. The proposed model can choose the best parameters to have the highest throughput. Simulation results show that the throughput can be enhanced by 4.4 times higher than the conventionally measured results.

PCA-based Feature Extraction using Class Information (클래스 정보를 이용한 PCA 기반의 특징 추출)

  • Park, Myoung-Soo;Na, Jin-Hee;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.492-497
    • /
    • 2005
  • Feature extraction is important to classify data with large dimension such as image data. The representative feature extraction methods lot feature extraction ate PCA, ICA, LDA and MLP, etc. These algorithms can be classified in two groups: unsupervised algorithms such as PCA, LDA, and supervised algorithms such as LDA, MLP. Among these two groups, supervised algorithms are more suitable to extract the features for classification because of the class information of input data. In this paper we suggest a new feature extraction algorithm PCA-FX which uses class information with PCA to extract ieatures for classification. We test our algorithm using Yale face database and compare the performance of proposed algorithm with those of other algorithms.

Inhibitory Effects of Cinnamic Acid Analogs on fMLP-Induced Chemotaxis of Rat Polymorphonuclear Leukocytes (흰쥐 다형핵백혈구의 fMLP로 유도한 유주현상에 대한 신나믹산 유사체의 억제효과)

  • Min, Kyung-Rak;Kim, Jin-Jun;Park, Sun-Gyoo;Lee, Jeong-Rai;Kang, Seh-Hoon;Kim, Young-Soo
    • YAKHAK HOEJI
    • /
    • v.42 no.2
    • /
    • pp.165-169
    • /
    • 1998
  • Inhibitory effects of 16 cinnamic acid analogs on formyl-Met-Leu-Phe(fMLP)-induced chemotaxis of rat polymorphonuclear leukocytes were determined by using a microchemotaxis appa ratus. 3,4-Dlhydrocinnamic acid called as caffeic acid exhibited the highest inhibitory effect on the chemotaxis among cinnamic acid analogs tested in this study. Hydroxycinnamic acids exhibited stronger inhibitory effects on the chemotaxis than cinnnamic acid. Hydroxycinnamic acids with one hydroxy group at ortho, meta or para position exhibited similar inhibitory effects on the chemotaxis with corresponding methoxy cinnamic acids, but 3,4-dihydroxycinnamic acid did stronger inhibitory effects than 3,4-dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exhibited weaker inhibitory effects on the chemotaxis than 1,2-dimethoxy-4-propenylbenzene and 3,4-dimethoxy cinnamonitrile with -CH=CHCN or -CH=$CHCH_3$, group instead of -CH=CHCOOH group. 4-Hydroxy cinnamic acid and 3,4-dihydroxycinnamic acid exhibited stronger exhibitory effects on the chemotaxis than 3-(4-hydroxyphenyl) propionic acid and 3,4-dihydroxyhydrocinnamic acid with -$CH_2CH_2$COOH group instead of -CH=CHCOOH group.

  • PDF

Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning (딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화)

  • Kim, Myung-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.725-732
    • /
    • 2020
  • This paper uses variables following as : to follow me well(0-9), it takes a lot of time to make a decision (0-9), lethargy(0-9) during physical activity in the exercise learning program of the children in the marginalized class. This paper classifies 'gender', 'physical education classroom', and 'upper, middle and lower' of age, and observe changes in ego-resiliency and self-control through sports rehabilitation therapy to find out changes in mental health. To achieve this, the data acquired was merged and the characteristics of large and small numbers were removed using the Label encoder and One-hot encoding. Then, to evaluate the performance by applying each algorithm of MLP, SVM, Dicesion tree, RNN, and LSTM, the train and test data were divided by 75% and 25%, and then the algorithm was learned with train data and the accuracy of the algorithm was measured with the Test data. As a result of the measurement, LSTM was the most effective in sex, MLP and LSTM in physical education classroom, and SVM was the most effective in age.

Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks (LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정)

  • Joo, Hyeong-Kil;Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.433-441
    • /
    • 2019
  • In this paper, a method of estimating speech parameters for ultrasonic Doppler signals reflected from the articulatory muscles using LSTM (Long Short Term Memory) RNN (Recurrent Neural Networks) was introduced and compared with the method using MLP (Multi-Layer Perceptrons). LSTM RNN were used to estimate the Fourier transform coefficients of speech signals from the ultrasonic Doppler signals. The log energy value of the Mel frequency band and the Fourier transform coefficients, which were extracted respectively from the ultrasonic Doppler signal and the speech signal, were used as the input and reference for training LSTM RNN. The performance of LSTM RNN and MLP was evaluated and compared by experiments using test data, and the RMSE (Root Mean Squared Error) was used as a measure. The RMSE of each experiment was 0.5810 and 0.7380, respectively. The difference was about 0.1570, so that it confirmed that the performance of the method using the LSTM RNN was better.

Comparative Analysis of the Binary Classification Model for Improving PM10 Prediction Performance (PM10 예측 성능 향상을 위한 이진 분류 모델 비교 분석)

  • Jung, Yong-Jin;Lee, Jong-Sung;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • High forecast accuracy is required as social issues on particulate matter increase. Therefore, many attempts are being made using machine learning to increase the accuracy of particulate matter prediction. However, due to problems with the distribution of imbalance in the concentration and various characteristics of particulate matter, the learning of prediction models is not well done. In this paper, to solve these problems, a binary classification model was proposed to predict the concentration of particulate matter needed for prediction by dividing it into two classes based on the value of 80㎍/㎥. Four classification algorithms were utilized for the binary classification of PM10. Classification algorithms used logistic regression, decision tree, SVM, and MLP. As a result of performance evaluation through confusion matrix, the MLP model showed the highest binary classification performance with 89.98% accuracy among the four models.