• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.535 seconds

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

Multivariate Time Series Analysis for Rainfall Prediction with Artificial Neural Networks

  • Narimani, Roya;Jun, Changhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.135-135
    • /
    • 2021
  • In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.

  • PDF

SG-MLP: Switch Gated Multi-Layer Perceptron Model for Natural Language Understanding (자연어 처리를 위한 조건부 게이트 다층 퍼셉트론 모델 개발 및 구현)

  • Son, Guijin;Kim, Seungone;Joo, Se June;Cho, Woojin;Nah, JeongEun
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.1116-1119
    • /
    • 2021
  • 2018 년 Google 사의 사전 학습된 언어 인공지능 BERT 를 기점으로, 자연어 처리 학계는 주요 구조를 유지한 채 경쟁적으로 모델을 대형화하는 방향으로 발전했다. 그 결과, 오늘날 자연어 인공지능은 거대 사기업과 그에 준하는 컴퓨팅 자원을 소유한 연구 단체만의 전유물이 되었다. 본 논문에서는 다층 퍼셉트론을 병렬적으로 배열해 자연어 인공지능을 제작하는 기법의 모델을 제안하고, 이를 적용한'조건부 게이트 다층 퍼셉트론 모델(SG-MLP)'을 구현하고 그 결과를 비교 관찰하였다. SG-MLP 는 BERT 의 20%에 해당하는 사전 학습량만으로 다수의 지표에서 그것과 준하는 성능을 보였고, 동일한 과제에 대해 더 적은 연산 비용을 소요한다.

Development of Investment Distribution System Using MLP(Multi-Layer Perceptron) Neural Network (MLP(Multi-Layer Perceptron) 신경망을 활용한 투자 자산분배 시스템 개발)

  • Park, Byeoung-Hun;An, Min-Ju;Yang, Da-Eun;Choi, Da-Yeon;Kim, Joung-Min
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.746-748
    • /
    • 2022
  • 투자 분배 시스템은 지속성, 수익성, 변동성, 하방경직성 등 각각의 지표를 찾아내는 데이터 분석을 조합한 시스템으로 MLP 신경망을 통한 시황을 예측으로 투자 경험이 부족한 일반 사용자에게 안정적인 투자 분배 전략을 제공한다. 투자분배 시스템 구현을 위하여 추가적으로 금융시장에 대한 회귀분석, 켈리 공식과 같은 도구를 활용하였다.

Optimization of Model based on Relu Activation Function in MLP Neural Network Model

  • Ye Rim Youn;Jinkeun Hong
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 2024
  • This paper focuses on improving accuracy in constrained computing settings by employing the ReLU (Rectified Linear Unit) activation function. The research conducted involves modifying parameters of the ReLU function and comparing performance in terms of accuracy and computational time. This paper specifically focuses on optimizing ReLU in the context of a Multilayer Perceptron (MLP) by determining the ideal values for features such as the dimensions of the linear layers and the learning rate (Ir). In order to optimize performance, the paper experiments with adjusting parameters like the size dimensions of linear layers and Ir values to induce the best performance outcomes. The experimental results show that using ReLU alone yielded the highest accuracy of 96.7% when the dimension sizes were 30 - 10 and the Ir value was 1. When combining ReLU with the Adam optimizer, the optimal model configuration had dimension sizes of 60 - 40 - 10, and an Ir value of 0.001, which resulted in the highest accuracy of 97.07%.

Spatiotemporal Feature-based LSTM-MLP Model for Predicting Traffic Accident Severity (시공간 특성 기반 LSTM-MLP 모델을 활용한 교통사고 위험도 예측 연구)

  • Hyeon-Jin Jung;Ji-Woong Yang;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.178-185
    • /
    • 2023
  • Rapid urbanization and advancements in technology have led to a surge in the number of automobiles, resulting in frequent traffic accidents, and consequently, an increase in human casualties and economic losses. Therefore, there is a need for technology that can predict the risk of traffic accidents to prevent them and minimize the damage caused by them. Traffic accidents occur due to various factors including traffic congestion, the traffic environment, and road conditions. These factors give traffic accidents spatiotemporal characteristics. This paper analyzes traffic accident data to understand the main characteristics of traffic accidents and reconstructs the data in a time series format. Additionally, an LSTM-MLP based model that excellently captures spatiotemporal characteristics was developed and utilized for traffic accident prediction. Experiments have proven that the proposed model is more rational and accurate in predicting the risk of traffic accidents compared to existing models. The traffic accident risk prediction model suggested in this paper can be applied to systems capable of real-time monitoring of road conditions and environments, such as navigation systems. It is expected to enhance the safety of road users and minimize the social costs associated with traffic accidents.

Prediction of box office using data mining (데이터마이닝을 이용한 박스오피스 예측)

  • Jeon, Seonghyeon;Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1257-1270
    • /
    • 2016
  • This study deals with the prediction of the total number of movie audiences as a measure for the box office. Prediction is performed by classification techniques of data mining such as decision tree, multilayer perceptron(MLP) neural network model, multinomial logit model, and support vector machine over time such as before movie release, release day, after release one week, and after release two weeks. Predictors used are: online word-of-mouth(OWOM) variables such as the portal movie rating, the number of the portal movie rater, and blog; in addition, other variables include showing the inherent properties of the film (such as nationality, grade, release month, release season, directors, actors, distributors, the number of audiences, and screens). When using 10-fold cross validation technique, the accuracy of the neural network model showed more than 90 % higher predictability before movie release. In addition, it can be seen that the accuracy of the prediction increases by adding estimates of the final OWOM variables as predictors.

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Feature Vector Extraction and Automatic Classification for Transient SONAR Signals using Wavelet Theory and Neural Networks (Wavelet 이론과 신경회로망을 이용한 천이 수중 신호의 특징벡타 추출 및 자동 식별)

  • Yang, Seung-Chul;Nam, Sang-Won;Jung, Yong-Min;Cho, Yong-Soo;Oh, Won-Tcheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 1995
  • In this paper, feature vector extraction methods and classification algorithms for the automatic classification of transient signals in underwater are discussed. A feature vector extraction method using wavelet transform, which shows good performance with small number of coefficients, is proposed and compared with the existing classical methods. For the automatic classification, artificial neural networks such as multilayer perceptron (MLP), radial basis function (RBF), and MLP-Class are utilized, where those neural networks as well as extracted feature vectors are combined to improve the performance and reliability of the proposed algorithm. It is confirmed by computer simulation with Traco's standard transient data set I and simulated data that the proposed feature vector extraction method and classification algorithm perform well, assuming that the energy of a given transient signal is sufficiently larger than that of a ambient noise, that there are the finite number of noise sources, and that there does not exist noise sources more than two simultaneously.

  • PDF

Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats

  • Park, Ji-Min;Bong, Ha-Yoon;Jeong, Hye-In;Kim, Yeon-Kyoung;Kim, Ji-Yeon;Kwon, O-Ran
    • Nutrition Research and Practice
    • /
    • v.3 no.4
    • /
    • pp.272-278
    • /
    • 2009
  • Postprandial hypoglycemic effect of mulberry leaf (Morus alba L.) was compared in two animal models: Goto-Kakizaki (GK) rats, a spontaneous non-obese animal model for type II diabetes, and their counterpart control Wistar rats. First, the effect of a single oral administration of mulberry leaf aqueous extract (MLE) on postprandial glucose responses was determined using maltose or glucose as substrate. With maltose-loading, MLE reduced peak responses of blood glucose significantly in both GK and Wistar rats (P < 0.05), supporting the inhibition of $\alpha$-glucosidase by MLE in the small intestine. With glucose-loading, MLE also significantly reduced blood glucose concentrations, measured at 30 min, in both animal models (P < 0.01), proposing the inhibition of glucose transport by MLE. Next, dried mulberry leaf powder (MLP) was administered for 8 weeks by inclusion in the diet. By MLP administration, fasting blood glucose was significantly reduced at weeks 4 and 5 (P < 0.05), but then returned to values that were similar to those of the control at the end of experimental period in GK rats. Insulin, HOMA-IR, C-reactive protein, and triglycerides tended to be decreased by MLP treatment in GK rats. All other biochemical parameters were not changed by MLP administration in GK rats. Collectively, these findings support that MLE has significant postprandial hypoglycemic effect in both non-obese diabetic and healthy animals, which may be beneficial as food supplement to manage postprandial blood glucose. Inhibitions of glucose transport as well as $\alpha$-glucosidase in the small intestine were suggested as possible mechanisms related with the postprandial hypoglycemic effect of MLE.