• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.035 seconds

Hydrological Modelling of Water Level near "Hahoe Village" Based on Multi-Layer Perceptron

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • "Hahoe Village" in Andong region is an UNESCO World Heritage Site. It should be protected against various disasters such as fire, flooding, earthquake, etc. Among these disasters, flooding has drastic impact on the lives and properties in a wide area. Since "Hahoe Village" is adjacent to Nakdong River, it is important to monitor the water level near the village. In this paper, we developed a hydrological modelling using multi-layer perceptron (MLP) to predict the water level of Nakdong River near "Hahoe Village". To develop the prediction model, error back-propagation (EBP) algorithm was used to train the MLP with water level data near the village and rainfall data at the upper reaches of the village. After training with data in 2012 and 2013, we verified the prediction performance of MLP with untrained data in 2014.

Pan Evaporation Analysis using Nonlinear Disaggregation Model (비선형 분리모형에 의한 증발접시 증발량의 해석)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1147-1150
    • /
    • 2008
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of the support vector machines neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The SVM-NNM in time series modeling is relatively new and it is more problematic in comparison with classifications. In this study, The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

The Optimal Hydrologic Forecasting System for Abnormal Storm due to Climate Change in the River Basin (하천유역에서 기후변화에 따른 이상호우시의 최적 수문예측시스템)

  • Kim, Seong-Won;Kim, Hyeong-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2193-2196
    • /
    • 2008
  • In this study, the new methodology such as support vector machines neural networks model (SVM-NNM) using the statistical learning theory is introduced to forecast flood stage in Nakdong river, Republic of Korea. The SVM-NNM in hydrologic time series forecasting is relatively new, and it is more problematic in comparison with classification. And, the multilayer perceptron neural networks model (MLP-NNM) is introduced as the reference neural networks model to compare the performance of SVM-NNM. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the forecasting of the hydrologic time series in Nakdong river. Furthermore, we can suggest the new methodology to forecast the flood stage and construct the optimal forecasting system in Nakdong river, Republic of Korea.

  • PDF

Multi-dimensional Limiting Strategy for Robust, Accurate and Efficient Computations of Compressible Flows on Unstructured Meshes

  • Park, Jin-Seok;Yoon, Sung-Hwan;Kim, Chon-Gam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.378-385
    • /
    • 2008
  • The present paper deals with the accurate and robust limiting procedure for the multi-dimensional flow analysis on unstructured meshes. The multi-dimensional limiting process (MLP) which was successfully proposed on structured grid system is extended to unstructured meshes. Based on MUSCL-type framework on unstructured meshes, the new slope limiter is devised to satisfy the MLP condition, which is quite effective to regulate the unwanted oscillations, especially on multiple dimensions. Considering the neighborhood based on the vertex of the cell, as well as the edge, this limiting strategy captures the multi-dimensional flow features very accurately with the proper stencils. From the various numerical results, these desirable characteristics of the proposed limiting strategy are clearly shown.

  • PDF

Multi-dimensional Limiting Strategy for Robust, Accurate and Efficient Computations of Compressible Flows on Unstructured Meshes

  • Park, Jin-Seok;Yoon, Sung-Hwan;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.378-385
    • /
    • 2008
  • The present paper deals with the accurate and robust limiting procedure for the multi-dimensional flow analysis on unstructured meshes. The multi-dimensional limiting process (MLP) which was successfully proposed on structured grid system is extended to unstructured meshes. Based on MUSCL-type framework on unstructured meshes, the new slope limiter is devised to satisfy the MLP condition, which is quite effective to regulate the unwanted oscillations, especially on multiple dimensions. Considering the neighborhood based on the vertex of the cell, as well as the edge, this limiting strategy captures the multi-dimensional flow features very accurately with the proper stencils. From the various numerical results, these desirable characteristics of the proposed limiting strategy are clearly shown.

  • PDF

The phoneme segmentatioi with MLP-based postprocessor on speech synthesis corpora (합성용 운율 DB 구축에서의 MLP 기반 후처리가 포함된 음소분할)

  • 박은영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.344-349
    • /
    • 1998
  • 음성/언어학적 및 음성의 과학적 연구를 위해서는 대량의 음소 단위 분절 레이블링된 데이터베이스 구축이 필수적이다. 따라서, 본 논문은 음성 합성용 DB 의 구축 및 합성 단위 자동 생성 연구의 일환으로 자동 음소 분할기의 경계오류를 보상할 목적으로 MLP 기반 호처리기가 포함된 음소 분할 방식을 제안한다. 최근 자동 음소 분할기의 성능 향상으로 자동 분절 결과를 이용하여 음성 합성용 운율 DB를 작성하고 있으나, 여전히 경계오류를 수정하지 않고서는 합성 단위로 직접 사용하기 어렵다. 이로 인해 보다 개선된 자동 분절 기술이 요구된다. 따라서, 본 논문에서는 음성에 내제된 음향적 특징을 다층 신경회로망으로 학습하고, 자동 분절기 오류의 통계 특성을 이용하여 자동 분절 경계 수정에 용이한 방식을 제안한다. 고립단어로 발성된 합성 데이터베이스에서, 제안된 후처리기를 도입 후, 기존 자동 분절 시스템이 분할율에 비해 약 25% 의 향상된 성능을 보였으며, 절대 오류는 약 39%가 향상되었다.

  • PDF

Sensitivity analysis of weights in multi-layer perceptron realizing continuous mappings

  • Choi, Chong-Ho;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1377-1382
    • /
    • 1990
  • In Multi-Layer Perceptron (MLP) which realizes continuous mappings, the output errors is directly affected by the weight errors which may be caused by the limited precision of digital or analog hardware in implementations. So, it is important to study the sensitivity due to the perturbation of connection weights between neurons. In this paper, we derive a sensitivity function to the statistical weight perturbations in MLP with differentiable activation functions. This sensitivity function can be regarded as an ensemble average of deterministic sensitivity measures due to the perturbations of weights. Hence, this sensitivity function can be used as the criteria for selecting weights with the minimum sensitivity among possible sets of connection weights in MLP. For the verification of the validity of the proposed sensitivity function, computer simulations have been performed and through the simulations we find good agreement between the theoretical and simulation results.

  • PDF

Chip design and application of gas classification function using MLP classification method (MLP분류법을 적용한 가스분류기능의 칩 설계 및 응용)

  • 장으뜸;서용수;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.309-312
    • /
    • 2001
  • A primitive gas classification system which can classify limited species of gas was designed and simulated. The 'electronic nose' consists of an array of 4 metal oxide gas sensors with different selectivity patterns, signal collecting unit and a signal pattern recognition and decision Part in PLD(programmable logic device) chip. Sensor array consists of four commercial, tin oxide based, semiconductor type gas sensors. BP(back propagation) neutral networks with MLP(Multilayer Perceptron) structure was designed and implemented on CPLD of fifty thousand gate level chip by VHDL language for processing the input signals from 4 gas sensors and qualification of gases in air. The network contained four input units, one hidden layer with 4 neurons and output with 4 regular neurons. The 'electronic nose' system was successfully classified 4 kinds of industrial gases in computer simulation.

  • PDF

A Study on MLP Neural Network Architecture and Feature Extraction for Korean Syllable Recognition (한국어 음절 인식을 위한 MLP 신경망 구조 및 특징 추출에 관한 연구)

  • 금지수;이현수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.672-675
    • /
    • 1999
  • In this paper, we propose a MLP neural network architecture and feature extraction for Korean syllable recognition. In the proposed syllable recognition system, firstly onset is classified by onset classification neural network. And the results information of onset classification neural network are used for feature selection of imput patterns vector. The feature extraction of Korean syllables is based on sonority. Using the threshold rate separate the syllable. The results of separation are used for feature of onset. nucleus and coda. ETRI's SAMDORI has been used by speech DB. The recognition rate is 96% in the speaker dependent and 93.3% in the speaker independent.

  • PDF

Isolated Word Recognition Algorithm Using Lexicon and Multi-layer Perceptron (단어사전과 다층 퍼셉트론을 이용한 고립단어 인식 알고리듬)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1110-1118
    • /
    • 1995
  • Over the past few years, a wide variety of techniques have been developed which make a reliable recognition of speech signal. Multi-layer perceptron(MLP) which has excellent pattern recognition properties is one of the most versatile networks in the area of speech recognition. This paper describes an automatic speech recognition system which use both MLP and lexicon. In this system., the recognition is performed by a network search algorithm which matches words in lexicon to MLP output scores. We also suggest a recognition algorithm which incorperat durational information of each phone, whose performance is comparable to that of conventional continuous HMM(CHMM). Performance of the system is evaluated on the database of 26 vocabulary size from 9 speakers. The experimental results show that the proposed algorithm achieves error rate of 7.3% which is 5.3% lower rate than 12.6% of CHMM.

  • PDF