• Title/Summary/Keyword: MLP.

Search Result 676, Processing Time 0.022 seconds

Prediction of Urban Land Cover Change Using Multilayer Perceptron and Markov Chain Analysis (다층 퍼셉트론(MLP)과 마코프 체인 분석(MCA)을 이용한 도심지 피복 변화 예측)

  • Bhang, Kon Joon;Sarker, Tanni;Lee, Jin-Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.85-94
    • /
    • 2018
  • The change of land covers in 2026 was prediceted based on the change of urbanization in 1996, 2006 and 2016 in Seoul and surrounding areas in this study. Landsat images were used as the basic data, and MLP (Multilayer Perceptron) and MCA (Markov Chain Analysis) were integrated for future prediction for the study area. The land cover transition potentials were calculated by setting up sub-models in MLP and the driving factors of land cover transition from 1996 to 2006 and transition probabilities were calculated using MCA to generate the land cover map of 2016. This was compared to the land cover map of 2016 from Landsat. MLP and MCA were verified and the future land covers of 2026 were predicted using the land cover map from Landsat in 2006 and 2016. As a result, it was predicted that the major land cover changes from 1996 to 2006 were from Barren Land and Grass Land to Builtup Area, and the same trend of transition will be remained for 2026. This study is meaningful in that it is applied for the first time to predict the future coating change in Seoul and surrounding areas by the MLP-MCA method.

Effects of Protein Kinase G on Phospholipase D Activity of Human Neutrophils (호중구에서 phospholipase D의 활성에 대한 protein kinase G의 영향)

  • 박지연;이민정;장민정;이선영;배외식;곽종영
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.903-910
    • /
    • 2003
  • Phospholipase D (PLD) plays an important role as a signaling molecule in the activation of neutrophils. In this study, effect of nitric oxide (NO) and cGMP on the activation of PLD in human neutrophils was investigated. Sodium nitroprusside (SNP), an agent to produce NO spontaneously in cells, alone increased PLD activity and the maximal activation was obtained with 0.5 mM SNP. Dibutyryl-cAMP, an agent to increase an intracellular cAMP concentration inhibited formyl-Met-Leu-Phe (fMLP)-stimulated PLD activity but 8-bromo-cGMP (300 $\mu$M), an agent to increase an intracellular cGMP concentration did not affect basal and fMLP-stimulated PLD activity. NO-induced activation of PLD was not blocked by KT 5823, an inhibitor of cGMP-dependent protein kinase (PKG), suggesting that NO-induced PLD activation is not mediated by cGMP. NO also stimulated p38 mitogen activated protein kinase (MAPK) in human neutrophils, indicated by increased phosphorylation of p38 MAPK in Western blotting. NO-induced phosphorylation of p38 MAPK was not inhibited by KT 5823 or n-butanol. RhoA, an regulatory factor of PLD activation was trans-located from cytosolic fraction to plasma membranes by fMLP or phorbol ester, and fMLP-stimulated but not phorbol ester-stimulated translocation of RhoA was inhibited by cGMP. These results suggest that NO stimulates PLD activity through other unidentified facto.(s) than cGMP even though cGMP inhibits the artivation of RhoA.

MLP-based 3D Geotechnical Layer Mapping Using Borehole Database in Seoul, South Korea (MLP 기반의 서울시 3차원 지반공간모델링 연구)

  • Ji, Yoonsoo;Kim, Han-Saem;Lee, Moon-Gyo;Cho, Hyung-Ik;Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.47-63
    • /
    • 2021
  • Recently, the demand for three-dimensional (3D) underground maps from the perspective of digital twins and the demand for linkage utilization are increasing. However, the vastness of national geotechnical survey data and the uncertainty in applying geostatistical techniques pose challenges in modeling underground regional geotechnical characteristics. In this study, an optimal learning model based on multi-layer perceptron (MLP) was constructed for 3D subsurface lithological and geotechnical classification in Seoul, South Korea. First, the geotechnical layer and 3D spatial coordinates of each borehole dataset in the Seoul area were constructed as a geotechnical database according to a standardized format, and data pre-processing such as correction and normalization of missing values for machine learning was performed. An optimal fitting model was designed through hyperparameter optimization of the MLP model and model performance evaluation, such as precision and accuracy tests. Then, a 3D grid network locally assigning geotechnical layer classification was constructed by applying an MLP-based bet-fitting model for each unit lattice. The constructed 3D geotechnical layer map was evaluated by comparing the results of a geostatistical interpolation technique and the topsoil properties of the geological map.

Research on the modified algorithm for improving accuracy of Random Forest classifier which identifies automatically arrhythmia (부정맥 증상을 자동으로 판별하는 Random Forest 분류기의 정확도 향상을 위한 수정 알고리즘에 대한 연구)

  • Lee, Hyun-Ju;Shin, Dong-Kyoo;Park, Hee-Won;Kim, Soo-Han;Shin, Dong-Il
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.341-348
    • /
    • 2011
  • ECG(Electrocardiogram), a field of Bio-signal, is generally experimented with classification algorithms most of which are SVM(Support Vector Machine), MLP(Multilayer Perceptron). But this study modified the Random Forest Algorithm along the basis of signal characteristics and comparatively analyzed the accuracies of modified algorithm with those of SVM and MLP to prove the ability of modified algorithm. The R-R interval extracted from ECG is used in this study and the results of established researches which experimented co-equal data are also comparatively analyzed. As a result, modified RF Classifier showed better consequences than SVM classifier, MLP classifier and other researches' results in accuracy category. The Band-pass filter is used to extract R-R interval in pre-processing stage. However, the Wavelet transform, median filter, and finite impulse response filter in addition to Band-pass filter are often used in experiment of ECG. After this study, selection of the filters efficiently deleting the baseline wandering in pre-processing stage and study of the methods correctly extracting the R-R interval are needed.

Improvements of an English Pronunciation Dictionary Generator Using DP-based Lexicon Pre-processing and Context-dependent Grapheme-to-phoneme MLP (DP 알고리즘에 의한 발음사전 전처리와 문맥종속 자소별 MLP를 이용한 영어 발음사전 생성기의 개선)

  • 김회린;문광식;이영직;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.21-27
    • /
    • 1999
  • In this paper, we propose an improved MLP-based English pronunciation dictionary generator to apply to the variable vocabulary word recognizer. The variable vocabulary word recognizer can process any words specified in Korean word lexicon dynamically determined according to the current recognition task. To extend the ability of the system to task for English words, it is necessary to build a pronunciation dictionary generator to be able to process words not included in a predefined lexicon, such as proper nouns. In order to build the English pronunciation dictionary generator, we use context-dependent grapheme-to-phoneme multi-layer perceptron(MLP) architecture for each grapheme. To train each MLP, it is necessary to obtain grapheme-to-phoneme training data from general pronunciation dictionary. To automate the process, we use dynamic programming(DP) algorithm with some distance metrics. For training and testing the grapheme-to-phoneme MLPs, we use general English pronunciation dictionary with about 110 thousand words. With 26 MLPs each having 30 to 50 hidden nodes and the exception grapheme lexicon, we obtained the word accuracy of 72.8% for the 110 thousand words superior to rule-based method showing the word accuracy of 24.0%.

  • PDF

An Improvement of the Outline Mede Error Backpropagation Algorithm Learning Speed for Pattern Recognition (패턴인식에서 온라인 오류역전파 알고리즘의 학습속도 향상방법)

  • 이태승;황병원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.616-618
    • /
    • 2002
  • MLP(multilayer perceptron)는 다른 패턴인식 방법에 비해 몇 가지 이점이 있어 다양한 문제영역에서 사용되고 있다 그러나 MLP의 학습에 일반적으로 사용되는 EBP(error backpropagation) 알고리즘은 학습시간이 비교적 오래 걸린다는 단점이 있으며, 이는 실시간 처리를 요구하는 문제나 대규모 데이터 및 MLP 구조로 인해 학습시간이 상당히 긴 문제에서 제약으로 작용한다. 패턴인식에 사용되는 학습데이터는 풍부한 중복특성을 내포하고 있으므로 패턴마다 MLP의 내부변수를 갱신하는 은라인 계열의 학습방식이 속도의 향상에 상당한 효과가 있다. 일반적인 온라인 EBP 알고리즘에서는 내부 가중치 갱신시 고정된 학습률을 적용한다. 고정 학습률을 적절히 선택함으로써 패턴인식 응용에서 상당한 속도개선을 얻을 수 있지만, 학습률을 고정함으로써 온라인 방식에서 패턴별 갱신의 특성을 완전히 활용하지 못하는 비효율성이 발생한다. 또한, 학습도중 패턴군이 학습된 패턴과 그렇지 못한 패턴으로 나뉘고 이 가운데 학습된 패턴은 학습을 위한 계산에 포함될 필요가 없음에도 불구하고, 기존의 온라인 EBP에서는 에폭에 할당된 모든 패턴을 일률적으로 계산에 포함시킨다. 이 문제에 대해 본 논문에서는 학습이 진행됨에 따라 패턴마다 적절한 학습률을 적용하고 필요한 패턴만을 학습에 반영하는 패턴별 가변학습률 및 학습생략(COIL) 방댑을 제안한다. 제안한 COIL의 성능을 입증하기 위해 화자증명과 음성인식을 실험하고 그 결과를 제시한다.

  • PDF

Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics (신경망이론은 이용한 폴리우레탄 코팅포 촉감의 예측)

  • 이정순;신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.152-159
    • /
    • 2002
  • Neural networks are used to predict the sense of touch of polyurethane coated fabrics. In this study, we used the multi layer perceptron (MLP) neural networks in Neural Connection. The learning algorithm for neural networks is back-propagation algorithm. We used 29 polyurethane coated fabrics to train the neural networks and 4 samples to test the neural networks. Input variables are 17 mechanical properties measured with KES-FB system, and output variable is the sense of touch of polyurethane coated fabrics. The influence of MLF function, the number of hidden layers, and the number of hidden nodes on the prediction accuracy is investigated. The results were as follows: MLP function, the number of hidden layer and the number of hidden nodes have some influence on the prediction accuracy. In this work, tangent function, the architecture of the double hidden layers and the 24-12-hidden nodes has the best prediction accuracy with the lowest RMS error. Using the neural networks to predict the sense of touch of polyurethane coated fabrics has hotter prediction accuracy than regression approach used in our previous study.

Fault Diagnosis of Induction Motor based on PCA and Nonlinear Classifier (PCA와 비선형분류기에 기반을 둔 유도전동기의 고장진단)

  • Park, Sung-Moo;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.119-123
    • /
    • 2006
  • In this paper, we propose fault diagnosis of induction motor based on PCA and MLP. To resolve the main drawback of MLP, we calculate the reduced features by PCA in advance. Finally, we develop the diagnosis system based on nonlinear classifier by MLP rather than linear classifier by conventional k-NN. By various experiments, we obtained better classification performance in comparison to the results produced by linear classifier by k-NN.

FORECAST OF SOLAR PROTON EVENTS WITH NOAA SCALES BASED ON SOLAR X-RAY FLARE DATA USING NEURAL NETWORK

  • Jeong, Eui-Jun;Lee, Jin-Yi;Moon, Yong-Jae;Park, Jongyeop
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.209-214
    • /
    • 2014
  • In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural network method. The combinations of X-ray flare class, impulsive time, and location are used for input data. For this study we make a number of trials by changing the number of layers and nodes as well as combinations of the input data. To find the best model, we use the summation of F-scores weighted by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive value), in order to minimize both misses and false alarms. We find that the MLP models are much better than the multiple linear regression model and one layer MLP model gives the best result.