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Abstract: In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales
by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data
from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural
network method. The combinations of X-ray flare class, impulsive time, and location are used for input
data. For this study we make a number of trials by changing the number of layers and nodes as well
as combinations of the input data. To find the best model, we use the summation of F-scores weighted
by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive
value), in order to minimize both misses and false alarms. We find that the MLP models are much better

than the multiple linear regression model and one layer MLP model gives the best result.
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1. INTRODUCTION

Solar proton event (SPE), which is defined as solar
energetic particle events having a flux of >10 MeV
protons greater than or equal to 10 particle flux unit
(pfu, number of particles cm=2 sec™!ster~1), is one of
the strongest solar activities. The SPE is very signif-
icant for space weather in that it can seriously affect
hardware in satellites and astronauts. It has been well
known that SPEs are very intimately associated with
solar activities such as solar flares and coronal mass
ejections (CMEs). There have been many studies on
the relationship between SPE and X-ray flares; e.g.,
shock acceleration of electrons and ions in solar flares
(Ellison et al. 1985), proton events and X-ray flares
in the last three solar cycles (Belov et al. 2005), and
a study of solar energetic particle events of 1997-2006
(Cane et al. 2010).

Machine learning algorithms such as support vector
machine and neural network have been used for the
study of solar activities (e.g., Colak & Qahwaji 2009;
Al-Omari et al. 2010; Choi et al. 2012). The algo-
rithms can learn systems from historical data. There-
fore, the algorithms make it possible to construct a fore-
cast model even though the relationship between cause
and effect is not clearly understood. Neural networks
have been broadly used in space weather applications
such as the prediction of solar activities (Wang 2000;
Gong et al. 2004; Wang et al. 2008; Qahwaji et al.
2007, 2008; Henwood et al. 2010) and geomagnetic ac-
tivities (Lundstedt 1992; Hernandez et al. 1993; Free-
man et al. 1993; Valach et al. 2009; Ji et al. 2013).

SPE prediction models have been developed by neu-
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ral networks (Wang 2000; Gong et al. 2004; Cui et al.
2012), which are mostly applied to the prediction of
SPE occurrence (Yes or No of SPE events). The mod-
els used several kinds of input data such as sunspot
properties from white light and magnetogram observa-
tions, flare, and radio burst. While two models (Gong
et al. 2004; Cui et al. 2012) can predict “event” or “no
event”, Wang (2000) suggested a two-pass model using
by both a yes/no event prediction and forecast three
levels of SPE events.

In this study we make the first attempt to forecast
SPE scales by neural network. We develop a set of SPE
forecast models that predicts SPE scales, which repre-
sents the SPE flux according to NOAA space weather
scales (S), by multi linear regression (MLR) and multi
layer perceptron (MLP) methods using X-ray flare in-
formation. The MLP is a feedforward artificial neural
network model, which is to classify complex patterns.
It has been used for an automatic solar flare detection
(Qu et al. 2003), a prediction of interplanetary shock
arrival time (Turchenko et al. 2007), and a prediction
of ozone levels (Wang et al. 2006).

This work would be a part of a two stage of SPE
forecast models: SPE probability (Park et al. 2010)
for the first stage and SPE scale, which represents the
SPE flux according to NOAA space weather scales (S),
for the second stage. The first stage is based on Park
et al. (2010) who developed a SPE prediction model
using X-ray flare information based on the dependence
of SPEs on their associated flares. In this study, as the
second stage, we develop a forecast model to predict
SPE scales using the neural network method.

We use X-ray flare class, location (longitude, lati-
tude), and impulsive time (flare peak time - flare start
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Table 1
Number of SPE events used in data selection

Data Sets The Number of Data
SPEs (SWPC Report) 246
associated flares (stronger or equal to X-ray class M) 203
associated flares (availability of time information) 175
SPEs for training (from 1976 to 1996) 105
SPEs for prediction (from 1997 to 2011) 70

Table 2
Input and output data

Input (flare information)

Output (SPE scale)®

X-ray flare class

case 1. 3 for Ms® class and 4 for Xi class  S1: 10 < flux® < 10?

case 2. i for Mi and 10+: for X3 class S2: 10% < flux < 10°

Flare location
Impulsive time

0 ~ 90 (center of the Sun: 90, limb: 0) S3: 10° < flux < 10*
flare peak time - flare start time(minute) S4 : 10* < flux < 10°

2 4: intensity of X-ray flare
P flux: flux in pfu (number of particles cm™2 sec™ ! ster ™!

¢ No S5 (flux > 10°) event during the period used in this analysis

time) as input data. We use SPE scales (S1-S4), which
is provided by NOAA space weather prediction center,
as output data. We construct the forecast models de-
pending on the number of layers and nodes of the MLP
as well as combinations of input data. For the evalu-
ation of the models, we use the F-score, which is the
harmonic mean of PODy defined by recall and preci-
sion, to find the best models.

This paper is organized as follows. Section 2 de-
scribes data, MLR and MLP methods, and statistical
verification method. In Section 3, we evaluate and com-
pare 1 MLR model and 4 MLP models. In Section 4,
we give a brief summary and conclusion.

2. DATA AND METHODS
2.1. Data

We use SPE scales in the solar proton event list! pro-
vided by Space Wether Prediction Center of National
Oceanic and Atmospheric Administration (NOAA).
There are 246 SPEs from April 1976 to September
2011. We select 203 SPEs associated with X-ray flares,
which are stronger or equal to M class (>1075W/m?).
Then we select 175 SPEs which are associated with
flares whose peak/start times and locations are avail-
able. From the GOES X-ray flare list? provided by
NOAA National Geophysical Data Center, we use X-
ray flare class, its location, and its impulsive time as
input data. The impulsive time is from the flare start
to peak time.

Table 1 shows the selected numbers of SPEs for this
study from April 1976 to September 2011. We separate
the data into two sets for training data from 1976 to
1996 and test data from 1997 to 2011. We preprocess

1Solar proton events affecting the Earth environment: http:
//www.swpc.noaa.gov/ftpdir/indices/SPE.txt

2ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_FLARES/
FLARES_XRAY

Table 3
Contingency table between predictions and observations

Observation
Yes No

Prediction Yes a b
No c

a = hit, b = false alarm, ¢ = miss

them so that the program can recognize the character-
istics of the data easily before we apply the MLR and
MLP programs to the data set. The flare locations are
given from 0 (limb) to 90 (center of the Sun). We num-
ber X-ray class with the following two cases: case 1) 3
for all strengths of M class and 4 for all strengths of X
class and case 2) an addition of 10 to the strength of
X-class flare. For case 2, M5 is 5 and X7 is 17. As out-
put data, we use SPE scales. Table 2 shows the input
and output data.

2.2. MLR and MLP

We apply MLR and MLP algorithms to solar flare data
for the prediction of SPE scales. We use Apache Com-
mon Math library® to preprocess the input data. It is
an open library that can be efficiently used in scientific
computing. Then we apply the MLR algorithm to the
input and output data. The MLR is one of regression
analysis, which is the most commonly used techniques
in statistics. It can be used to fit a predictive model
to an observed data set of values. In this analysis, the

3
MLR equation is expressed as Y;=>_ Xy;Ap+b. Here
k=1
Y, is a dependent variable, X}; is an independent vari-
able, Ay, is k-dimensional parameter, and b is a constant
term, where ¢ is an event number. In this analysis, Xy;
is the input data, which are X-ray class, flare location,

3http://commons . apache.org/math
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Table 4
Statistical verification parameters from the contingency table
Statistical Parameter = Description Definition
PODy or recall Probability of Detection of Yes observations a/(a+c)
FAR False Alarm Ratio b/(a+0b)
CSI Critical Success Index a/(a+b+c)
Precision Positive predictive value a/(a+b)

Training .
—>‘ Data H Grid Search ]
Making
Models
Forecast of
SPE scale
Evaluation of
the models

Figure 1. Flow chart of the development of SPE forecast
models based on MLP

Input Data
Data Preprocessing

and impulsive time. And Y; is the SPE scale. To con-
struct the MLR models, first, we find several models
with the combinations of input data from the training
data set. Second, we obtain output data from the input
of test data set.

The MLP is a feedforward artificial neural network
model. We use OpenCV* that provides the MLP func-
tions for train and prediction. We train the prepro-
cessed training data with changing the number of lay-
ers and nodes. We use a grid-search from 2 to 20 nodes
for each layers. In addition, we use a few kernel func-
tions and propagation methods. We use gaussian and
sigmoid kernel functions provided by OpenCV for the
models. Once after we train the data set, we predict
the SPE scale using the test data set by the models.
Then we rescale the output obtained from the MLR and
MLP models as follows: S1: 0<output<S,,;,+AS, S2:
Smin+AS<output<S,,in+2xAS, S3: S;int2xAS <
output<S,,in+3xAS, and S4: S,in+3xAS <output<
Smaz- Here AS is defined as (Syuaz —Smin)/4. Smin and
Sinaz are the minimum and maximum values of output
obtained by each model, respectively. Finally, we com-
pare the output data with the observations for the test
data set.

2.3. Statistical Verification

We evaluate the performance of the models using sta-
tistical parameters. In Table 3, the “a” is the number
of event forecasts that corresponds to the event obser-
vations (i.e., the number of hits); the “b” is the number
of event forecasts that do not correspond to the ob-

served events (i.e., the number of false alarms); the “¢”

4http://opencv.org

is the number of no-event forecasts corresponding to
the observed events (i.e., the number of misses). As an
example for the S1, the ‘a’ indicates the number of S1
forecasts that corresponds to the S1 observations. ‘b’
indicates the number of S1 forecasts that corresponds
to the S2-S4 observations.

In Table 4, we summarize various statistical parame-
ters based on the contingency table. PODy is the pro-
portions of hits. FAR is the proportion of incorrect
prediction. CSI is the proportion of correct predictions
that are either predicted or observed. The PODy is
a good verification parameter when we focus on the
misses. The CSI considers both misses and false alarms.
It is hard to say which parameter is more important in
space weather forecast. Therefore, we use a verification
parameter, a balanced F-score, which is the harmonic
mean of precision and recall. The precision is the prob-
ability of observation of ‘Yes’ predictions (see Table 4)
and the recall is the same with the PODy. The balanced
F-score is given by

F 2% Recall * Precision (1)
score= Recall + Precision

Since the prediction of stronger SPE scales is much
more important than that of weaker ones, we use a pa-
rameter, summation of F-scores weighted by SPE scale
(SF), to see an overall performance of the model for all
SPE scales. The SF is given by

4

SF = Z k x (F-score), (2)
k=1

where k is the SPE scale.

3. RESULTS AND DISCUSSION

We show one MLR and 4 MLP models in Table 5. The
MLR model shown in the Table 5 has the highest SF
among MLR models with the combinations of input
data. This model uses X (X-ray flare class) and T (im-
pulsive time) with case 1 as its input data. In the case
of MLP models, we find that a gaussian function is the
best kernel since it shows higher PODy and lower FAR.
With the changes of the number of layers and nodes as
well as the combinations of the input data, we select 4
MLP models whose SF values are larger than 2.5 in Ta-
ble 5. The selected MLP models show that XTL combi-
nation (X-ray flare class, impulsive time, and location)
with case 2 produces higher SF values than other com-
binations.
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Figure 2. Comparison of the F scores of all five models with SPE scales
Table 5
Kernel functions and parameters of MLP models
Program Model Input® X-ray flux” Kernel Parameters
Regression coefficient
MLR Regression XT case 1 X:0.618 T:9.377 Const.:-0.559
layer node
MLP1L6 XTL case 2 Gaussian 1 6
MLP MLP2L3x3 XTL case 2 Gaussian 2 3 by 3
MLP2L4x12  XTL case 2 Gaussian 2 4 by 12
MLP2L7x17  XTL case 2 Gaussian 2 7 by 17

aInput: X (X-ray Flare Class), T (Impulsive Time), L (Flare Location)
bX-ray flux : case 1 (All M class: 3, All X class: 4), case 2 (ex. M5 = 5, X7 = 17)

Table 6 shows the statistical verification parameters
of each model with SPE scales. The MLR model hardly
predicts the stronger SPEs than S1. It may come from
that the regression method find a model that is more
optimized for weaker SPEs since the number of weaker
SPEs are much larger than that of stronger SPEs.

We compare the F-scores of all five models with SPE
scales in Figure 2. The F-scores of MLP models are
much larger than those of the MLR model for the
events stronger than S1. In the comparison of the MLP
models, the F-score values of MLP1L6 (purple) and
MLP2L3x3 (blue) for S4 are larger than those of the
other models while the F-scores of MLP2L4x12 (red)
and MLP2L7x17 model (orange) for S2 are larger than
those of the other models. Especially, MLP1L6 model
(purple in Figure 2) has the highest value of F-score,
0.57 for S4. To compare an overall performance of these
models, we use the summation of F-scores (SF, Equa-

tion (2)) weighted by SPE scale since stronger events
are more important in terms of space weather. As a
result, we find that the MLP1L6 model has the high-
est value of SF, 4.37, which is larger than those of the
other MLP models. Main advantage of this model is
to well predict S4 events, which are extremely strong
ones. The values of PODy and CSI also show similar
patterns with the F-score values in Table 6. Therefore,
we suggest the MLP1L6 model, which has one hidden
layer with 6 nodes, for the prediction of SPE scales ac-
cording to the highest SF.

It is not easy to compare our model with previ-
ous other models in that other neural network models
mostly predict ‘yes’ or ‘no’ of SPE event (Gong et al.
2004; Cui et al. 2012). Wang (2000) used a neural
network method for the forecast of three levels of SPE
flux. Since his classification are different from our clas-
sification and the number of events that he used is too
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Table 6
Statistical verification parameters of all five models with SPE scales
Model Index Hits Obs PODy FAR CSI Precision F-score SF
S1 27 35 0.77 0.31  0.57 0.69 0.73
S2 0 20 0 0 0 1 0.0
Regression S3 5 9 0.56 0.83 0.15 0.17 0.26 2.67
S4 1 6 0.17 0 0.17 1 0.29
S1 27 35 0.77 0.39 0.52 0.61 0.68
S2 4 20 0.2 0.71 0.13 0.29 0.24
MLP1L6 S3 2 9 0.22 0.5 0.18 0.5 0.31 4.37
S4 4 6 0.67 0.5 0.4 0.5 0.57
S1 25 35 0.71 0.49 0.42 0.51 0.60
S2 3 20 0.15 0.75 0.1 0.25 0.19
MLP2L3x 3 S3 2 9 0.22 0.33 0.2 0.67 0.33 3.97
S4 3 6 0.5 0.5 0.33 0.5 0.5
S1 26 35 0.74 0.38 0.51 0.62 0.68
S2 7 20 0.35 0.5 0.26 0.5 0.41
MLP2L4x12 S3 3 9 0.33 0.63 0.21 0.38 0.35 3.87
S4 2 6 0.33 0.67 0.2 0.33 0.33
S1 27 35 0.77 0.4 0.51 0.6 0.68
S2 7 20 0.35 0.53 0.25 0.47 0.40
MLP2L7x17 S3 2 9 0.22 0.6 0.17 0.4 0.29 3.79
S4 2 6 0.33 0.6 0.22 0.4 0.36

small (14 events), it is difficult to compare his results
with ours. On the other hand, several studies to predict
SPE flux have been made based on the relationship be-
tween SPEs and X-ray flares (Garcia 1994; Balch 2008;
Park et al. 2010). We compute the SF value of Park et
al.(2010) and find that the value (2.33) is much smaller
than those of our neural network models and a little
smaller than that of the MLR method.

One may raise a question why MLP1L6 model gives
best scores than other models for strong solar proton
events and MLP2L4 12 and MLP2L7 17 give best re-
sults for weak solar proton events. The neural network
algorithms learn systems from historical data, which is
useful to construct a forecast model even though the
physical relationship between cause and effect is not
clearly understood. Therefore, it is hard to find any
physical understanding from the neural network mod-
els. We examine the dependence of F-scores of the mod-
els on the number of nodes and layers. We find that the
F-score of a model decreases as the number of layers or
nodes. This fact can be understood by the fact that the
number of strong solar proton events is much smaller
than that of weak solar ones.

4, SUMMARY AND CONCLUSION

We develop the SPE scale forecast models based on
solar X-ray flare information (flare class, source loca-
tion, impulsive time) using the MLR and MLP meth-
ods. The models can be used to predict the SPE scale
once after a strong flare (M or X class) occurs. For the
evaluation of the models, we use several statistical ver-
ification parameters such as PODy, CSI, and F-score.
To compare an overall performance of the models, we
used the SF value, the summation of F-scores weighted

by SPE scales.

We find that the statistical verification parameters of
the MLP models are much better than the MLR model.
A comparison of the SF values shows that the MLP1L6
model of one layer and 6 nodes gives the best result. It
is noted that our MLP models are the first attempt to
forecast the SPE scales by the neural network method.

As explained in Section 1, we suggest that our model
can be a part of a two-stage SPE forecast model: SPE
probability forecast (Park et al. 2010; Park et al. 2012)
for the first stage and SPE scale forecast (this study)
for the second stage. We expect that our models can
be also used for the operation of an automatic SPE
forecast.

Several studies have shown that SPEs are closely re-
lated with CMEs (Kahler et al. 1984; Park et al. 2012;
Huang et al. 2012). We plan to develop a model based
on both flare and CME parameters as its input data.
We will also consider other input data such as hard X-
ray fluxes (Garcia 2004), magnetic properties(Cui et al.
2012), and other solar activities (Wang 2000; Gong et
al. 2004).
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