• 제목/요약/키워드: MLP ANN

검색결과 41건 처리시간 0.023초

ITS설비의 안정화를 위한 대지파라미터 및 등가대지저항률 추정 알고리즘 개발 (A Development of Earth Parameters and Equivalent Resistivity Estimation Algorithm for ITS Facility Stabilization)

  • 이종필;임재윤;지평식
    • 전기학회논문지P
    • /
    • 제62권4호
    • /
    • pp.186-191
    • /
    • 2013
  • Earth equipments are essential to protect ITS facilities from abnormal situation. In this research, an estimation algorithm of earth parameters and equivalent resistivity is introduced. Traditional estimation methods can be divided into graphic method and numerical method. The result of graphic method is varied by the ability of expert or repeated calculation and it is hard to estimate the parameters precisely. The numerical method requires special techniques such as optimizing theory, and numerous calculations, whose results can be varied with initial values. The proposed algorithm is based on the relationship between apparent resistances and earth parameters and approximates the nonlinear characteristics of earth using ANN(artificial neural networks). The effectiveness of proposed method is verified in case studies.

Nondestructive crack detection in metal structures using impedance responses and artificial neural networks

  • Ho, Duc-Duy;Luu, Tran-Huu-Tin;Pham, Minh-Nhan
    • Structural Monitoring and Maintenance
    • /
    • 제9권3호
    • /
    • pp.221-235
    • /
    • 2022
  • Among nondestructive damage detection methods, impedance-based methods have been recognized as an effective technique for damage identification in many kinds of structures. This paper proposes a method to detect cracks in metal structures by combining electro-mechanical impedance (EMI) responses and artificial neural networks (ANN). Firstly, the theories of EMI responses and impedance-based damage detection methods are described. Secondly, the reliability of numerical simulations for impedance responses is demonstrated by comparing to pre-published results for an aluminum beam. Thirdly, the proposed method is used to detect cracks in the beam. The RMSD (root mean square deviation) index is used to alarm the occurrence of the cracks, and the multi-layer perceptron (MLP) ANN is employed to identify the location and size of the cracks. The selection of the effective frequency range is also investigated. The analysis results reveal that the proposed method accurately detects the cracks' occurrence, location, and size in metal structures.

지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of ground water level)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.903-911
    • /
    • 2022
  • 물을 공급하기 위한 자원 중 하나인 지하수는 다양한 자연적 요인에 의해 수위의 변동이 발생한다. 최근, 인공신경망을 이용하여 지하수위의 변동을 예측하는 연구가 진행되었다. 기존에는 인공신경망 연산자 중 학습에 영향을 미치는 Optimizer로 경사하강법(Gradient Descent, GD) 기반 Optimizer를 사용하였다. GD 기반 Optimizer는 초기 상관관계 의존성과 해의 비교 및 저장 구조 부재의 단점이 존재한다. 본 연구는 GD 기반 Optimizer의 단점을 개선하기 위해 GD와 화음탐색법(Harmony Search, HS)를 결합한 새로운 Optimizer인 Gradient Descent combined with Harmony Search(GDHS)를 개발하였다. GDHS의 성능을 평가하기 위해 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용하여 이천율현 관측소의 지하수위를 학습 및 예측하였다. GD 및 GDHS를 사용한 MLP의 성능을 비교하기 위해 Mean Squared Error(MSE) 및 Mean Absolute Error(MAE)를 사용하였다. 학습결과를 비교하면, GDHS는 GD보다 MSE의 최대값, 최소값, 평균값 및 표준편차가 작았다. 예측결과를 비교하면, GDHS는 GD보다 모든 평가지표에서 오차가 작은 것으로 평가되었다.

Precise prediction of radiation interaction position in plastic rod scintillators using a fast and simple technique: Artificial neural network

  • Peyvandi, R. Gholipour;rad, S.Z. Islami
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1154-1159
    • /
    • 2018
  • Precise prediction of the radiation interaction position in scintillators plays an important role in medical and industrial imaging systems. In this research, the incident position of the gamma rays was predicted precisely in a plastic rod scintillator by using attenuation technique and multilayer perceptron (MLP) neural network, for the first time. Also, this procedure was performed using nonlinear regression (NLR) method. The experimental setup is comprised of a plastic rod scintillator (BC400) coupled with two PMTs at two sides, a $^{60}Co$ gamma source and two counters that record count rates. Using two proposed techniques (ANN and NLR), the radiation interaction position was predicted in a plastic rod scintillator with a mean relative error percentage less than 4.6% and 14.6%, respectively. The mean absolute error was measured less than 2.5 and 5.5. The correlation coefficient was calculated 0.998 and 0.984, respectively. Also, the ANN technique was confirmed by leave-one-out (LOO) method with 1% error. These results presented the superiority of the ANN method in comparison with NLR and the other methods. The technique and set up used are simpler and faster than other the previous position sensitive detectors. Thus, the time, cost and shielding and electronics requirements are minimized and optimized.

인공신경망과 중규모기상수치예보를 이용한 강수확률예측 (Predicting Probability of Precipitation Using Artificial Neural Network and Mesoscale Numerical Weather Prediction)

  • 강부식;이봉기
    • 대한토목학회논문집
    • /
    • 제28권5B호
    • /
    • pp.485-493
    • /
    • 2008
  • 한반도 영역을 대상으로 RDAPS모형의 수치예보자료, AWS의 관측강수, 상층기상관측(upper-air sounding)의 관측자료를 이용하여 권역별 강수발생확률을 예측할 수 있는 인공신경망 모형을 제시하였다. 사용된 자료의 기간은 2001년 7, 8월과 2002년 6월로 홍수기를 대상으로 하였다. 500/750/1000 hPa에서의 지위고도, 500-1000 hPa에서의 층후(thickness), 500 hPa에서의 X와 Y방향 바람성분, 750 hPa에서의 X와 Y방향 바람성분, 표면풍속, 500/750 hPa/표면에서의 온도, 평균해면기압, 3시간 누적 강수, AWS관측소에서 관측된 RDAPS모형 실행전의 6시간과 12시간동안의 누적강수, 가강수량, 상대습도등을 신경망의 예측인자로 사용하였다. 신경망의 구조는 3층 MLP(Multi Layer Perceptron)로 구성하여 역전파알고리즘(Back-propagation)을 학습방법으로 사용하였다. 신경망예측결과 한반도전체에 대한 예측성과의 개선은 H가 6.8%상승하였고, 특히 TS와 POD는 각각 99.2%와 148.1% 상승함으로서 강수예측에 대한 신경망모형이 효과적인 도구가 될 수 있음을 확인하였다. KSS 역시 92.8% 개선됨으로서 RDAPS 예측에 비하여 뚜렷이 개선된 결과를 보여주고 있다.

Recurrent Neural Networks를 활용한 Baltic Dry Index (BDI) 예측 (Time-Series Prediction of Baltic Dry Index (BDI) Using an Application of Recurrent Neural Networks)

  • 한민수;유성진
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2017년도 추계학술대회
    • /
    • pp.50-53
    • /
    • 2017
  • 장기 해운불황에 따라 불확실성이 증폭되고 있는 상황에서 경기추세의 이해뿐만 아니라 예측 또한 중요해지고 있는 실정이다. 본 논문에서는 최근 특정 복잡한 문제에 대해서 각광받고 있는 인공신경망을 적용하여 BDI 예측을 연구하였다. 사용된 인공신경망은 순환신경망으로 RNN과 LSTM 그리고 비교의 목적으로 MLP를 통해 2009.04.01.부터 2017.07.31.의 기간을 대상으로 연구를 진행하였다. 또한 전통적 시계열 예측방법론인 ARIMA 분석을 실시해 인공신경망들의 예측성능과 비교하였다. 결과로 순환신경망인 RNN의 성능이 가장 뛰어났으며 LSTM의 특정 시계열(BDI)에의 적용가능성을 확인할 수 있었다.

  • PDF

인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가 (Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network)

  • 박도경
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.179-186
    • /
    • 2006
  • 본 연구에서는 FRP Rebar로 보강된 철근콘크리트 보의 휨성능을 평가할 수 있는 모형을 개발하기 위하여 인공신경망 중 다층인식자 모형을 사용하였다. 인공신경망 모형에 사용될 학습자료들은 기존 연구자료들의 데이터를 이용하였다. 입력층의 독립변수는 휨성능에 주요 요소인 폭, 유효깊이, 압축강도, FRP 보강비, FRP 균형철근비을 사용하였다. 출력층 종속변수는 실험에서 측정된 모멘트 성능을 사용하였다. 개발된 인공신경망 모형은 GFRP, CFRP, AFRP Rebar 적용이 모두 가능하며, 모형의 검증은 다른 선행 연구자들이 수행한 자료를 이용하였다. 인공신경망 모형 추정결과 ANN(0.05) 모형의 경우에 비교적 정확한 휨성능 추정값을 나타낸 반면, ANN(0.1) 모형에서는 다소 오차가 발생하였다. 인공신경망 모형의 검증결과 주어진 실험 데이터 값과 비교적 일치하고 있음을 확인할 수 있었다. 또한, 휨성능 평가 변수에 대한 민감도 분석결과 유효깊이의 영향이 가장 크고 FRP 철근비, FRP 균형철근비, 압축강도, 폭으로 분석되었다.

Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks

  • Mazloom, Moosa;Yoosefi, M.M.
    • Computers and Concrete
    • /
    • 제12권3호
    • /
    • pp.285-301
    • /
    • 2013
  • This paper concentrates on the results of experimental work on tensile strength of self-compacting concrete (SCC) caused by flexure, which is called rupture modulus. The work focused on concrete mixes having water/binder ratios of 0.35 and 0.45, which contained constant total binder contents of 500 $kg/m^3$ and 400 $kg/m^3$, respectively. The concrete mixes had four different dosages of a superplasticizer based on polycarboxylic with and without silica fume. The percentage of silica fume that replaced cement in this research was 10%. Based upon the experimental results, the existing equations for anticipating the rupture modulus of SCC according to its compressive strength were not exact enough. Therefore, it is decided to use artificial neural networks (ANN) for anticipating the rupture modulus of SCC from its compressive strength and workability. The conclusion was that the multi layer perceptron (MLP) networks could predict the tensile strength in all conditions, but radial basis (RB) networks were not exact enough in some circumstances. On the other hand, RB networks were more users friendly and they converged to the final networks quicker.

Use of multi-hybrid machine learning and deep artificial intelligence in the prediction of compressive strength of concrete containing admixtures

  • Jian, Guo;Wen, Sun;Wei, Li
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.11-23
    • /
    • 2022
  • Conventional concrete needs some improvement in the mechanical properties, which can be obtained by different admixtures. However, making concrete samples costume always time and money. In this paper, different types of hybrid algorithms are applied to develop predictive models for forecasting compressive strength (CS) of concretes containing metakaolin (MK) and fly ash (FA). In this regard, three different algorithms have been used, namely multilayer perceptron (MLP), radial basis function (RBF), and support vector machine (SVR), to predict CS of concretes by considering most influencers input variables. These algorithms integrated with the grey wolf optimization (GWO) algorithm to increase the model's accuracy in predicting (GWMLP, GWRBF, and GWSVR). The proposed MLP models were implemented and evaluated in three different layers, wherein each layer, GWO, fitted the best neuron number of the hidden layer. Correspondingly, the key parameters of the SVR model are identified using the GWO method. Also, the optimization algorithm determines the hidden neurons' number and the spread value to set the RBF structure. The results show that the developed models all provide accurate predictions of the CS of concrete incorporating MK and FA with R2 larger than 0.9972 and 0.9976 in the learning and testing stage, respectively. Regarding GWMLP models, the GWMLP1 model outperforms other GWMLP networks. All in all, GWSVR has the worst performance with the lowest indices, while the highest score belongs to GWRBF.

Limit equilibrium and swarm intelligence solutions in analyzing shallow footing's bearing capacity located on two-layered cohesionless soils

  • Hossein Moayedi;Mesut Gor;Mansour Mosallanezhad;Soheil Ghareh;Binh Nguyen Le
    • Geomechanics and Engineering
    • /
    • 제38권4호
    • /
    • pp.439-453
    • /
    • 2024
  • The research findings of two nonlinear machine learning and soft computing models- the Cuckoo optimization algorithm (COA) and the Teaching-learning-based optimization (TLBO) in combination with artificial neural network (ANN)-are presented in this article. Detailed finite element modeling (FEM) of a shallow footing on two layers of cohesionless soil provided the data sets. The models are trained and tested using the FEM outputs. Additionally, various statistical indices are used to compare and evaluate the predicted and calculated models, and the most precise model is then introduced. The most precise model is recommended to estimate the solution after the model assessment process. When the anticipated findings are compared to the FEM data, there is an excellent agreement, which indicates that the TLBO-MLP solutions in this research are reliable (R2=0.9816 for training and 0.99366 for testing). Additionally, the optimized COA-MLP network with a swarm size of 500 was observed to have R2 and RMSE values of (0.9613 and 0.11459) and (0.98017 and 0.09717) for both the normalized training and testing datasets, respectively. Moreover, a straightforward formula for the soft computing model is provided, and an excellent consensus is attained, indicating a high level of dependability for the suggested model.