• Title/Summary/Keyword: MLP(Multi-Layer Perceptron)

Search Result 234, Processing Time 0.031 seconds

FORECAST OF SOLAR PROTON EVENTS WITH NOAA SCALES BASED ON SOLAR X-RAY FLARE DATA USING NEURAL NETWORK

  • Jeong, Eui-Jun;Lee, Jin-Yi;Moon, Yong-Jae;Park, Jongyeop
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.209-214
    • /
    • 2014
  • In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural network method. The combinations of X-ray flare class, impulsive time, and location are used for input data. For this study we make a number of trials by changing the number of layers and nodes as well as combinations of the input data. To find the best model, we use the summation of F-scores weighted by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive value), in order to minimize both misses and false alarms. We find that the MLP models are much better than the multiple linear regression model and one layer MLP model gives the best result.

On the factors controlling effects at MLP Networks (다층 퍼셉트론에서 구조인자 제어의 영향)

  • Yoon, Yeo-Chang
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.337-340
    • /
    • 2003
  • 다층 퍼셉트론(Multi-Layer Perceptron, MLP) 구조를 이용한 비선형 적합은 실제문제에 매우 다양하게 적용되고 있다. 이때 일반화된 MLP 구조의 적합을 위해서는 은닉노드의 개수 초기 가중값 그리고 학습 회수와 같은 구조인자들을 함께 고려해야 한다. 만약 구조인자들이 부적절하게 선택되었다면 일반화된 MLP 구조의 적합효율이 매우 저하될 수 있다. 그러므로 MLP 구조에 영향을 주는 인자들의 영향을 살펴보는 것은 중요한 문제다. 이 논문에서는 제어상자(controller box)를 통한 학습결과와 더불어 MLP 구조를 일반화할 때 영향을 줄 수 있는 구조인자(factor)들의 실증분석과 이들의 상대효과를 살펴본다.

  • PDF

Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics (신경망이론을 이용한 폴리우레탄 코팅포 촉감의 예측)

  • 이정순;신혜원
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.280-285
    • /
    • 2001
  • 폴리우레탄 코팅포의 촉감을 예측하기 위하여 신경망 이론이 사용되었다. 본 연구에서는 Neural Connection의 MLP(Multi Layer Perceptron)를 신경망 분석에 사용하였으며, 학습 알고리즘은 백프로파게인션(Backpropagation)을 이용하였다. 사용된 변수는 KES-FB시스템에서 측정된 17가지 역학적 특성치를 설명변수, 촉감치를 목표변수로 하였다. 폴리우레탄 코팅포의 촉감을 정확하게 예측할 수 있는 신경망 모델을 찾기 위해, 은닉층의 노드수를 8에서 34로 변화시켜 보았다. 또한 MLP적용함수로 선형함수, 비선형 시그모이드함수, 탄젠트 함수를 사용하여 목표변수를 예측하여 모형의 정확도를 살펴보았다. 구축된 신경망모델은 17가지 역학적특성치 자료를 이용하여 학습되었으며 학습 완료 후 학습에 사용되지 않은 시료를 시스템에 적용하여 학습된 신경망 시스템이 촉감을 평가하게 한 후 주관적으로 평가된 촉감치와 비교하여 본 시스템의 판단의 정확성을 평가하도록 하였다. 은닉층의 노드수와 MLP적용함수는 촉감예측에 영향을 미치는 것으로 나타났는데, 촉감 예측에 가장 적절한 모형은 MLP 적용함수가 탄젠트 함수이고 노드수가 22인 것으로 나타났다. 신경망을 통한 폴리우레탄 코팅포의 촉감 예측력은 선행연구에서 이용된 통계적 방법보다 높게 나타나 폴리우레탄 코팅포의 촉감예측에 신경망의 이용은 효과적인 것으로 밝혀졌다.

  • PDF

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

Optimized ANNs for predicting compressive strength of high-performance concrete

  • Moayedi, Hossein;Eghtesad, Amirali;Khajehzadeh, Mohammad;Keawsawasvong, Suraparb;Al-Amidi, Mohammed M.;Van, Bao Le
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.867-882
    • /
    • 2022
  • Predicting the compressive strength of concrete (CSoC) is of high significance in civil engineering. The CSoC is a highly dependent and non-linear parameter that requires powerful models for its simulation. In this work, two novel optimization techniques, namely evaporation rate-based water cycle algorithm (ER-WCA) and equilibrium optimizer (EO) are employed for optimally finding the parameters of a multi-layer perceptron (MLP) neural processor. The efficiency of these techniques is examined by comparing the results of the ensembles to a conventionally trained MLP. It was observed that the ER-WCA and EO optimizers can enhance the training accuracy of the MLP by 11.18 and 3.12% (in terms of reducing the root mean square error), respectively. Also, the correlation of the testing results climbed from 78.80% to 82.59 and 80.71%. From there, it can be deduced that both ER-WCA-MLP and EO-MLP can be promising alternatives to the traditional approaches. Moreover, although the ER-WCA enjoys a larger accuracy, the EO was more efficient in terms of complexity, and consequently, time-effectiveness.

Skin Region Extraction Using Multi-Layer Neural Network and Skin-Color Model (다층 신경망과 피부색 모델을 이용한 피부 영역 검출)

  • Park, Sung-Wook;Park, Jong-Wook
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.2
    • /
    • pp.31-38
    • /
    • 2011
  • Skin color is a very important information for an automatic face recognition. In this paper, we proposed a skin region extraction method using the MLP(Multi-Layer Perceptron) and skin color model. We use the adaptive lighting compensation technique for improved performance of skin region extraction. Also, using an preprocessing filter, normally large areas of easily distinct non-skin pixels, are eliminated from further processing. Experimental results show that the proposed method has better performance than the conventional methods, and reduces processing time by 31~49% on average.

Predicting the spray uniformity of pest control drone using multi-layer perceptron (다층신경망을 이용한 드론 방제의 살포 균일도 예측)

  • Baek-gyeom Seong;Seung-woo Kang;Soo-hyun Cho;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Dae-hyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.25-34
    • /
    • 2023
  • In this study, we conducted a research on optimizing the spraying performance of agricultural drones and predicted the spraying performance in various flight conditions using the multi-layer perceptron (MLP). Data was collected using a test device for pesticide spraying performance according to the water sensitive paper (WSP) evaluation. MLP training involved supervised learning to achieve a coefficient of variation (CV), which indicates the degree of uniform spraying. The performance evaluation was conducted using R-squared (R2), the test samples showed an R2 of 0.80. The results of this study showed that drone spraying performance can be predicted under various flight environments. In addition, the correlation analysis between flight conditions and predicted spraying performance will be useful for further research on optimizing the spraying performance of agricultural drones.

Nonlinear Approximations Using Modified Mixture Density Networks (변형된 혼합 밀도 네트워크를 이용한 비선형 근사)

  • Cho, Won-Hee;Park, Joo-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.847-851
    • /
    • 2004
  • In the original mixture density network(MDN), which was introduced by Bishop and Nabney, the parameters of the conditional probability density function are represented by the output vector of a single multi-layer perceptron. Among the recent modification of the MDNs, there is the so-called modified mixture density network, in which each of the priors, conditional means, and covariances is represented via an independent multi-layer perceptron. In this paper, we consider a further simplification of the modified MDN, in which the conditional means are linear with respect to the input variable together with the development of the MATLAB program for the simplification. In this paper, we first briefly review the original mixture density network, then we also review the modified mixture density network in which independent multi-layer perceptrons play an important role in the learning for the parameters of the conditional probability, and finally present a further modification so that the conditional means are linear in the input. The applicability of the presented method is shown via an illustrative simulation example.

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

MLP Based Real-Time Gravity Disturbance Compensation in INS Embedded Computer (다층 레이어 퍼셉트론 기반 INS 내장형 컴퓨터에서의 실시간 중력교란 보상)

  • Hyun-seok Kim;Hyung-soo Kim;Yun-hyuk Choi;Yun-chul Cho;Chan-sik Park
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.674-684
    • /
    • 2023
  • In this paper, a real-time prediction technique for gravity disturbances is proposed using a multi-layer perceptron (MLP) model. To select a suitable MLP model, 4 models with different network sizes were designed to compare the training accuracy and execution time. The MLP models were trained using the data of vehicle moving along the surface of the sea or land, including their positions and gravity disturbance. The gravity disturbances were calculated using the 2160th degree and order EGM2008 with SHM. Among the models, MLP4 demonstrated the highest training accuracy. After training, the weights and biases of the 4 models were stored in the embedded computer of the INS to implement the MLP network. MLP4 was found to have the shortest execution time among the 4 models. These research results are expected to contribute to improving the navigation accuracy of INS through gravity disturbance compensation in the future.