Multi-Layer Perceptron network has been mainly applied to many practical problems because of its nonlinear mapping ability. However the generalization ability of MLP networks may be affected by the number of hidden nodes, the initial values of weights and the training errors. These factors, if improperly chosen, may result in poor generalization ability of MLP networks. It is important to identify these factors and their interaction in order to control effectively the generalization ability of MLP networks. In this paper, we have empirically identified the factors that affect the generalization ability of MLP networks, and compared their relative effects on the generalization performance for the conventional and visualized weight selecting methods using the controller box.
In this paper, we propose automatic screen on / off method of OST-HMD screen using gaze depth estimation technique. The proposed method uses MLP (Multi-layer Perceptron) to learn the user's gaze information and the corresponding distance of the object, and inputs the gaze information to estimate the distance. In the learning phase, eye-related features obtained using a wearable eye-tracker. These features are then entered into the Multi-layer Perceptron (MLP) for learning and model generation. In the inference step, eye - related features obtained from the eye tracker in real time input to the MLP to obtain the estimated depth value. Finally, we use the results of this calculation to determine whether to turn the display of the HMD on or off. A prototype was implemented and experiments were conducted to evaluate the feasibility of the proposed method.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.5
/
pp.997-1006
/
2019
To overcome the difficulties and inefficiencies of the existing power analysis attack, we try to extract the secret key embedded in a cryptographic device using attack model based on MLP(Multi-Layer Perceptron) method. The target of our proposed power analysis attack is the AES-128 encryption module implemented on an 8-bit processor XMEGA128. We use the divide-and-conquer method in bytes to recover the whole 16 bytes secret key. As a result, the MLP-based power analysis attack can extract the secret key with the accuracy of 89.51%. Additionally, this MLP model has the 94.51% accuracy when the pre-processing method on power traces is applied. Compared to the machine leaning-based model SVM(Support Vector Machine), we show that the MLP can be a outstanding method in power analysis attacks due to excellent ability for feature extraction.
"Hahoe Village" in Andong region is an UNESCO World Heritage Site. It should be protected against various disasters such as fire, flooding, earthquake, etc. Among these disasters, flooding has drastic impact on the lives and properties in a wide area. Since "Hahoe Village" is adjacent to Nakdong River, it is important to monitor the water level near the village. In this paper, we developed a hydrological modelling using multi-layer perceptron (MLP) to predict the water level of Nakdong River near "Hahoe Village". To develop the prediction model, error back-propagation (EBP) algorithm was used to train the MLP with water level data near the village and rainfall data at the upper reaches of the village. After training with data in 2012 and 2013, we verified the prediction performance of MLP with untrained data in 2014.
Journal of the Korean Society of Clothing and Textiles
/
v.26
no.1
/
pp.152-159
/
2002
Neural networks are used to predict the sense of touch of polyurethane coated fabrics. In this study, we used the multi layer perceptron (MLP) neural networks in Neural Connection. The learning algorithm for neural networks is back-propagation algorithm. We used 29 polyurethane coated fabrics to train the neural networks and 4 samples to test the neural networks. Input variables are 17 mechanical properties measured with KES-FB system, and output variable is the sense of touch of polyurethane coated fabrics. The influence of MLF function, the number of hidden layers, and the number of hidden nodes on the prediction accuracy is investigated. The results were as follows: MLP function, the number of hidden layer and the number of hidden nodes have some influence on the prediction accuracy. In this work, tangent function, the architecture of the double hidden layers and the 24-12-hidden nodes has the best prediction accuracy with the lowest RMS error. Using the neural networks to predict the sense of touch of polyurethane coated fabrics has hotter prediction accuracy than regression approach used in our previous study.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.3
/
pp.200-207
/
2001
In this paper, we propose an HMM(Hidden Markov modeJ)-MLP(Multi-layer perceptron) hybrid model for recognizing legal words on the English bank check. We adopt an explicit segmentation-based word level architecture to implement an HMM engine with nonscaled and non-normalized symbol vectors. We also introduce an MLP for implicit segmentation-based word recognition. The final recognition model consists of a hybrid combination of the HMM and MLP with a new hybrid probability measure. The main contributions of this model are a novel design of the segmentation-based variable length HMMs and an efficient method of combining two heterogeneous recognition engines. ExperimenLs have been conducted using the legal word database of CENPARMI with encouraging results.
Of the total economic loss caused by disasters, 40% are due to floods and floods have a severe impact on human health and life. So, it is important to monitor the water level of a river and to issue a flood warning during unfavorable circumstances. In this paper, we propose a modified error function to improve a hydrological modeling using a multi-layer perceptron (MLP) neural network. When MLP's are trained to minimize the conventional mean-squared error function, the prediction performance is poor because MLP's are highly tunned to training data. Our goal is achieved by preventing overspecialization to training data, which is the main reason for performance degradation for rare or test data. Based on the modified error function, an MLP is trained to predict the water level with rainfall data at upper reaches. Through simulations to predict the water level of Nakdong River near a UNESCO World Heritage Site "Hahoe Village," we verified that the prediction performance of MLP with the modified error function is superior to that with the conventional mean-squared error function, especially maximum error of 40.85cm vs. 55.51cm.
Kim, Jung-Joon;Kim, Tae-Hun;Ryu, Gang-Soo;Lee, Dae-Sik;Lee, Jong-Hak;Park, Kil-Houm
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.3
/
pp.226-231
/
2013
In The matching algorithm for automatic packaging of drugs is essential to determine whether the canister can exactly refill the suitable medicine. In this paper, we propose a hierarchical neural network with the upper and lower layers which can perform real-time processing and classification of many types of medicine bottles to prevent accidental medicine disaster. A few number of low-dimensional feature vector are extracted from the label images presenting medicine-bottle information. By using the extracted feature vectors, the lower layer of MLP(Multi-layer Perceptron) neural networks is learned. Then, the output of the learned middle layer of the MLP is used as the input to the upper layer of the MLP learning. The proposed hierarchical neural network shows good classification performance and real- time operation in the test of up to 30 degrees rotated to the left and right images of 100 different medicine bottles.
본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, VQ(Vectro Quantization)와 MLP(multi-layer perceptron)에 의한 음성 인식 방법을 제안한다. 이 방법은 VQ codebook을 구하고 이를 이용해서 관측열(observation sequence)을 구해각 codeword가 데이터로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상으로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 것으로 시스템의 효율성을 알아보기 위해 VQ/HMM(hidden markov model)에 의한 인식과 비교 실험한다. 실험 결과에 의하면, 시스템의 단순성에도 불구하고 학습능력애 뛰어난 관계로 VQ/HMM보다 VQ와 MLP에 의한 음성 인식률이 향상됨을 보여준다.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2005.11a
/
pp.158-161
/
2005
In this study, the defect diagnosis of the gas turbine engine was tried using Support Vector Machine(SVM). It is known that SVM can find the optimal solution mathematically through classifying two groups and searching for the Hyperplane of the arbitrary nonlinear boundary. The method for the decision of the gas turbine defect quantitatively was proposed using the Multi Layer SVM for classifying two groups and it was verified that SVM was shown quicker and more reliable diagnostic results than the existing Multi Layer Perceptron(MLP).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.