• Title/Summary/Keyword: MLC NAND Flash Memory

Search Result 22, Processing Time 0.016 seconds

SLC Buffer Performance Improvement using Page Overwriting Method in TLC NAND Flash-based Storage Devices (TLC 낸드 플래시기반 저장 장치에서 페이지 중복쓰기 기법을 이용한 SLC 버퍼 성능향상 연구)

  • Won, Samkyu;Chung, Eui-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • In multi-level-cell based storage devices, TLC NAND has been employed solid state drive due to cost effectiveness. Since TLC has slow performance and low endurance compared with MLC, TLC based storage has adopted SLC buffer scheme to improve performance. To improve SLC buffer scheme, this paper proposes page overwriting method in SLC block. This method provides data updates without erase operation within a limited number. When SLC buffer area is filled up, FTL should execute copying valid pages and erasing it. The proposed method reduces erase counts by 50% or more compared with previous SLC buffer scheme. Simulation results show that the proposed SLC buffer overwrite method achieves 2 times write performance improvement.

An Empirical Study on Linux I/O stack for the Lifetime of SSD Perspective (SSD 수명 관점에서 리눅스 I/O 스택에 대한 실험적 분석)

  • Jeong, Nam Ki;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.54-62
    • /
    • 2015
  • Although NAND flash-based SSD (Solid-State Drive) provides superior performance in comparison to HDD (Hard Disk Drive), it has a major drawback in write endurance. As a result, the lifetime of SSD is determined by the workload and thus it becomes a big challenge in current technology trend of such as the shifting from SLC (Single Level Cell) to MLC (Multi Level cell) and even TLC (Triple Level Cell). Most previous studies have dealt with wear-leveling or improving SSD lifetime regarding hardware architecture. In this paper, we propose the optimal configuration of host I/O stack focusing on file system, I/O scheduler, and link power management using JEDEC enterprise workloads in terms of WAF (Write Amplification Factor) which represents the efficiency perspective of SSD life time especially for host write processing into flash memory. Experimental analysis shows that the optimum configuration of I/O stack for the perspective of SSD lifetime is MinPower-Dead-XFS which prolongs the lifetime of SSD approximately 2.6 times in comparison with MaxPower-Cfq-Ext4, the best performance combination. Though the performance was reduced by 13%, this contributions demonstrates a considerable aspect of SSD lifetime in relation to I/O stack optimization.