• Title/Summary/Keyword: MIXER

Search Result 1,120, Processing Time 0.028 seconds

The Evaluation of Structural Safety of Impeller Using FEM Simulation (FEM 시뮬레이션을 이용한 임펠러의 구조 안전성 평가)

  • Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.41-47
    • /
    • 2020
  • As modern industries are highly being developed, it is required that mechanical parts have to be manufactured with a high precision. In order to have precise parts, error-free designs have to be done before manufacturing with accuracy. For this intention being fulfilled, a mechanical analysis is essential for design proof. Nowadays, FEM simulation is a popular tool for verifying a machine design. In this paper, an impeller, being utilized in a compressor or an oil mixer as an actuator, is studied for an evaluation. The purpose of this study is to present a safety of an impeller for a proof of its mechanical stability. A static analysis for stress, strain, and deformation within a regular usage is examined. This simulation test shows 357.26×106 Pa for maximum equivalent stress and 0.207mm for total deformation. A fatigue test is carried to provide durability and its result shows that minimum safety factor is 3.2889, which guarantees that it runs without a fatigue failure in 106 cycles. The natural frequencies for the impeller is ranged from 228.09Hz to 1,253.6Hz for the 1st to the 6th mode. Total deformations at these natural frequencies are shown from 6.84mm to 12.631mm. Furthermore, Campbell diagram reveals that a critical speed is not found throughout regular rotational speeds. From the test results for the analysis, this paper concludes that the suggested impeller is proved for its mechanical safety and good to utilize at industries.

Effect of the De-NOx Facility Operating Condition on NOx Emission in a 125 MW Wood Pellet Power Plant (125 MW급 우드펠릿 발전소에서 탈질설비 운전조건이 질소산화물 발생량에 미치는 영향)

  • Jeon, Moonsoo;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.52-61
    • /
    • 2022
  • This study tested the effect of de-NOx Facility operating condition on Nox emisiion in a 125 MW wood pellet power plant in Yeongdong Eco Power Plant Unit 1, which is in operation. As SNCR urea flow rate increased, NOx emission gradually decreased, but ammonia slip after SCR increased. The boiler under test has a structure that is unfavorable to SNCR operation due to the high internal temperature, and the optimum location of the nozzle will be required. SCR dilution air temperature change did not affect the amount of NOx generated. Increasing SCR ammonia flow reduced the NOx emission at SCR outlet and also increased the NOx removal efficiency. However, the ammonia flow rate of 111 kg/h, which does not exceed the ammonia slip its own reference limit, is estimated to be the maximum operating standard. The increase in SCR mixer pressure reduced NOx emission and the removal efficiency was also measured to be the most effective variable to inhibit NOx production.

  • PDF

A novel radioactive particle tracking algorithm based on deep rectifier neural network

  • Dam, Roos Sophia de Freitas;dos Santos, Marcelo Carvalho;do Desterro, Filipe Santana Moreira;Salgado, William Luna;Schirru, Roberto;Salgado, Cesar Marques
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2334-2340
    • /
    • 2021
  • Radioactive particle tracking (RPT) is a minimally invasive nuclear technique that tracks a radioactive particle inside a volume of interest by means of a mathematical location algorithm. During the past decades, many algorithms have been developed including ones based on artificial intelligence techniques. In this study, RPT technique is applied in a simulated test section that employs a simplified mixer filled with concrete, six scintillator detectors and a137Cs radioactive particle emitting gamma rays of 662 keV. The test section was developed using MCNPX code, which is a mathematical code based on Monte Carlo simulation, and 3516 different radioactive particle positions (x,y,z) were simulated. Novelty of this paper is the use of a location algorithm based on a deep learning model, more specifically a 6-layers deep rectifier neural network (DRNN), in which hyperparameters were defined using a Bayesian optimization method. DRNN is a type of deep feedforward neural network that substitutes the usual sigmoid based activation functions, traditionally used in vanilla Multilayer Perceptron Networks, for rectified activation functions. Results show the great accuracy of the DRNN in a RPT tracking system. Root mean squared error for x, y and coordinates of the radioactive particle is, respectively, 0.03064, 0.02523 and 0.07653.

Mathematical modeling of concrete beams containing GO nanoparticles for vibration analysis and measuring their compressive strength using an experimental method

  • Kasiri, Reza;Massah, Saeed Reza
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.73-79
    • /
    • 2022
  • Due to the extensive use of concrete structures in various applications, the improvement of their strength and quality has become of great importance. A new way of achieving this purpose is to add different types of nanoparticles to concrete admixtures. In this work, a mathematical model has been employed to analyze the vibration of concrete beams reinforced by graphene oxide (GO) nanoparticles. To verify the accuracy of the presented model, an experimental study has been conducted to compare the compressive strengths of these beams. Since GO nanoparticles are not readily dissolved in water, before producing the concrete samples, the GO nanoparticles are dispersed in the mixture by using a shaker, magnetic striker, ultrasonic devices, and finally, by means of a mechanical mixer. The sinusoidal shear deformation beam theory (SSDBT) is employed to model the concrete beams. The Mori-Tanaka model is used to determine the effective properties of the structure, including the agglomeration influences. The motion equations are calculated by applying the energy method and Hamilton's principle. The vibration frequencies of the concrete beam samples are obtained by an analytical method. Three samples containing 0.02% GO nanoparticles are made and their compressive strengths are measured and compared. There is a good agreement between our results and those of the mathematical model and other papers, with a maximum difference of 1.29% between them. The aim of this work is to investigate the effects of nanoparticle volume fraction and agglomeration and the influences of beam length and thickness on the vibration frequency of concrete structures. The results show that by adding the GO nanoparticles, the vibration frequency of the beams is increased.

The Effect of Rotor Speed on the Circiuarity of Domestic Graphite (국내산 흑연의 구형화에 미치는 로터 속도의 영향)

  • Junseop Lee;Yoojin Lim;Kyoungkeun Yoo;Hyunkyoo Park
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.66-72
    • /
    • 2022
  • The circularity and particle size distribution of products obtained from dry classification after circularity tests using a high-intensity mixer were investigated to evaluate the use of domestic graphite concentrate as a lithium-ion battery material. At a rotor speed of 3,000 rpm, the particle size and circularity of the concentrated sample and product were unchanged. The circularity increased and particle size decreased when the rotor speeds were increased to 6,000 rpm, 10,000 rpm, and 12,000 rpm and the operating time was increased. For instance, the circularity increased from 0.870 to 0.936 when the rotor speed was increased from 3,000 rpm to 12,000 rpm for an operating time of 10 min. After the circularity test, dry classification was performed, wherein the circularity of the coarse particles was found to have increased to 0.947. Round particles were observed in the SEM images, indicating that high circularity was successfully achieved.

Application of computer methods for the effects of nanoparticles on the frequency of the concrete beams experimentally and numerically

  • Chencheng Song;Junfeng Shi;Ibrahim Albaijan;H. Elhosiny Ali;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Due to high application of concrete structures in construction industry, however, the quality improvement is essential. One of the new ways for this purpose is adding the nanoparticles to the concrete. In this work, vibration analysis of concrete beams reinforced by graphene oxide (GO) nanoparticles based on mathematical model has been investigated. For the accuracy of the presented model, the experimental study is done for comparing the compressive strength. Since the nanoparticles can not be solved in water without any specific process, at the first, GO nanoparticles should be dispersed in water by using shaker, magnetic striker, ultrasonic devices and finally mechanical mixer. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-Tanak model model is utilized for obtaining the effective properties of the beam including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the concrete beam is obtanied by analytical method. Three samples with 0.02% GO nanoparticles are built and its compressive strength is compared which shows a good accuracy with maximum 1.29% difference with mathematical model and other papers. The aim of this work from the theoretical study is investigating the effects of nanoparticles volume percentage and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the GO nanoparticles, the frequency is increased. For example, with enhancing the volume percent of GO nanoparticles from zero to 0.08%, the compressive strength is increased 48.91%. and 46.83%, respectively for two cases of with and without agglomeration.

Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target (Ti-Mo 코어-쉘 분말 제조 및 소결 특성 연구)

  • Won Hee Lee;Chun Woong Park;Heeyeon Kim;Yuncheol Ha;Jongmin Byun;Young Do Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400℃. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.

nhancing Anonymity Protection in RWA Token Trading Using Blockchain Exchange Platforms (블록체인 거래소 플랫폼을 활용한 RWA 토큰 거래에서의 개인정보보호 개선 방안)

  • Jaeseong Lee;Junghee Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.641-649
    • /
    • 2024
  • This paper addresses the issue of anonymity protection in the trading of Real-World Asset (RWA) tokens, a prominent topic in the cryptocurrency market in recent years. The principle of transparency inherent in blockchain technology makes it challenging to ensure the anonymity of traders. Although there have been instances in existing blockchain research where mixer services have been utilized to protect the privacy of Fungible Tokens (FTs), and prior studies have explored the privacy protection for Non-Fungible Tokens (NFTs), RWA tokens, which can embody characteristics of both FTs and NFTs and are tied to physical assets, present a complex challenge in achieving the goal of anonymity protection through any single method. This paper proposes a hypothetical token trading platform, ARTeX, and describes the trading process to analyze measures for protecting the anonymity of RWA token transactions.

Implementation of Audio Effect Device for Anchor System

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • Recently, Audio systems transform the configuration of conventional sound reinforcement and public address systems using audio over internet protocol (AoIP), whereby audio signals are transmitted and received based on internet protocol (IP). Currently, AoIP technologies are leading the audio market, and various technologies have been released. Audio networks and the control hierarchy over peer-to-peer (Anchor) technology based on AoIP transmit and receive audio signals over a wide bandwidth without an audio mixer. Audio system based on Anchor technology is constructed by connecting the on-site audio center (OAC), a device that can transmit and receive audio sources and output equipment over IP. Receiving OAC of the Anchor technology can receive and mix audio signals transmitted from different IPs; consequently, novel audio systems can be configured by replacing conventional audio mixers. However, the Anchor technology does not have an equalizer function for improving the quality of audio equipment. Therefore, tone distortion may occur owing to signal loss between equipment, poor audio-signal clarity, and howling due to audio deformation according to different architectural structures and environments. In this study, we implemented an audio effect device capable of tone control using the Audio Processor Core. Using Anchor technology, tone control was realized through an audio effect device in the receiving OAC. The output of the incoming OAC was received by the audio effect device, which adjusted the tone and then outputted it. Thus, the tone issues in Anchor technology were overcome by the receiving OAC and audio effect devices. In future, audio system configurations using Anchor technology could be the standard for audio equipment.

Antimicrobial and Antioxidant Activity of Protamine Prepared from Salmon Sperm (연어정자로부터 제조된 프로타민의 항균성 및 항산화성)

  • Joo, Dong-Sik;Cho, Soon-Yeong;Kang, Hyun-Joo;Jin, Deok-Hee;Lee, Chang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.902-907
    • /
    • 2000
  • Protamine-strong basic protein was prepared from salmon(chum salmon, Oncorhynchus keta) sperm by several pretreatment method. And there were determined yield, amino acid composition, antimicrobial and antioxidant activity of protamine on each pretreatment condition. The yield of protamine was different according to pretreatment, and ultrasonicating, homogenizing and microwaving pretreatment were about 16.0%, 15.5% and 10%, respectively. The main amino acid of P60(microwaving pretreatment for 10 min at $80^{\circ}C$) and UU6(ultrasonicating pretreatment for 60 min at $20^{\circ}C$) were arginine, proline and tryptophan, and arginine content of P60 and UU6 were 61%, 53%, respectively. On the other hand, main amino acid of M(homogenizing pretreatment by mixer) were methionine, proline and arginine, the content were 34%, 28% and 11%, respectively. Also MC(homogenizing pretreatment with $H_{2}SO_{4}$ soln. by mixer) was very different with P60, UU6 and M, the content of MC were proline 44.8% and arginine 39.7%. Prepared protamines showed antimicrobial activity to several gram(+) and gram(-) strain. In particular, the UU6 and P60 protamine has strong antimicrobial activity to Bacillus subtilis and Escherichia coli, and the activity was increased with concentration increasing. Regardless of pretreatment method, all protamine showed antioxidant activity and the $EDA_{50}$ of P60, UU6, M and MC were $101\;{\mu}g/mL$, $410\;{\mu}g/mL$, $523\;{\mu}g/mL$ and $490\;{\mu}g/mL$, respectively.

  • PDF