• Title/Summary/Keyword: MIXER

Search Result 1,120, Processing Time 0.027 seconds

Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

Icing Characteristics in Liquid-Phase Injection of LPG Fuel (액상분사식 LPG 인젝터의 아이싱 생성 특성 및 억제 방법)

  • Lee, Sun-Youp;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2009
  • Since a liquid-phase LPG injection system allows accurate control of fuel injection and increase in volumetric efficiency, it has advantages in achieving higher engine power and lower emissions compared to the mixer type LPG supplying system. However, this system also leads to an unexpected event called icing phenomenon which occurs when moisture in the air near the injector freezes and becomes frost around the nozzle hole due to extraction of heat from surrounding caused by instant fuel vaporization. As a result, it becomes difficult to control air/fuel ratio in engine operation, inducing exacerbation of engine performance and HC emission. One effort to mitigate icing phenomenon is to attach anti-icing injection tip in the end of nozzle. Therefore, in this study, the effect of engine operation parameters as well as surrounding conditions on icing phenomenon was investigated in a bench test rig with commercially-used anti-icing injection tips. The test results show that considerable ice was deposited on the surface near the nozzle hole of the anti-icing tip in low rpm and low load operating conditions in ambient air condition. This is because acceleration of detachment of deposited ice from the tip surface was induced in high load, high rpm conditions, resulting in decrease in frost accumulation. The results of the bench testing also demonstrate that little or no ice was formed at surrounding temperature below a freezing point since the absolute amount of moisture contained in the intake air is too small in such a low temperature.

  • PDF

A Study on the Combustion Stability and Characteristics for D.O - Methanol Blending Oil in Diesel Engine (디젤기관에서의 경유-메탄올 혼합유의 연소 안전성과 연소특성에 관한 연구)

  • Kim, Sang-Am;Wang, Woo-Gyeong
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.48-55
    • /
    • 2018
  • It has recently been reported that methanol fuel has been used in the product carrier with established duel fuel engine, which has been greatly reducing emissions of $CO_2$, NOx and SOx from the engine. However, to use methanol alone as fuel oil in a general diesel engine, design modification of cylinder head is needed because the ignition aid device or the duel fuel injection system is needed. On the other hand, only if the mixer is installed on the fuel oil supply line, diesel oil - methanol blending oil can be used as fuel oil for the diesel engine, but there is a problem of the phase separation when two fuels are mixed. In this study, diesel oil and methanol were blended compulsorily in preventing the phase separation with installing agitators and a fuel oil boost pump on fuel line of a test engine. Also, cylinder pressure and fuel consumption quantity were measured according to engine load and methanol blending ratio, and indicated mean effective pressure, heat release rate and combustion temperature obtained from the single zone combustion model were analyzed to investigate the effects of latent heat of vaporization of methanol on combustion stability and characteristics. As a result, the combustion stability and characteristics of 10% methanol blending oil are closest to the those of diesel oil, and it could be used as fuel oil in existing diesel engines without deterioration of engine performance and combustion characteristics.

Effect of Zeolite Filler on the Thermal and Mechanical Properties of Cellulose Diacetate (Cellulose Diacetate의 열적 및 기계적 물성에 미치는 Zeolite 충전효과)

  • Lee, Chang-Kyu;Cho, Mi-Suk;Kim, In-Hoi;Nam, Jae-Do;Lee, Young-Kwan
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.243-247
    • /
    • 2009
  • Cellulose diacetate (CDA) was plasticized with triacetine (TA) and epoxidized soybean oil (ESO) in a high speed mixer. Composites of plasticized CDA and zeolite were prepared by a melting process. The $T_g$ value, $106^{\circ}C$ of the plasticized CDA was confirmed by DMA analysis. The $T_g$ value of the CDA with 50% zeolite was $125^{\circ}C$. As the content of zeolite was increased from 10 to 50% the modulus of the composite was increased from 1.7to 3.6 GPa by two times over the plasticized CDA, and its tensile strength was increased to 62 MPa and then decreased down 51 MPa, and its elongation was increased to 10% and then decreased down 3.2%. In the SEM image, the compatibility between CDA and zeolite was observed. Increasing the amount of zeolite in the composites resulted in further enhancement of the $CH_3COOH$ absorption effects.

Evaluation Methods of Homogeneity for Feedstocks and Effect of Homogeneity on the Magnetic Properties of Plastic Magnets (플라스틱 자석 혼합물의 균질도 평가방법과 균질도가 자기특성에 미치는 영향)

  • 이석희;최준환;문탁진;정원용
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.86-92
    • /
    • 1998
  • Homegeneous feedstock is necessary to make plastic magents with uniform magnetic properties, therefore the optrimized mixing route and the homogeneity evaluation method are demanded. In this paper, method of homogeneity evaluation and effect of homogeneity on the magnetic prperites were investigated using Sr-ferrite /EVA plastic magnets. The feedstocks with different homogeneity were prepared using batch mixer and single screw extruder. The homogeneities of feedstocks were tested by torgue sensor, capilary rheometer, and measurement of magnetic properties. Mixing torque measurement using torque sensor was an effective method to determine the critical powder loading, but it was nor suitable to suitable to determine the feedstock mixing quality. Particle alignment measurement of a plastic magent was very accurate to evaluate the homogeneity, but expensive equipments were required to make and measure the samples. Pressure measurement using capillary rheometer was a very effective and easy method with high accuracy. Homogeneous feedstock increased the particle alignment of plastic magnet. Remanet flux density and maximum energy product increased linearly and quadratically with increasing particle alignment, respectively.

  • PDF

Treatment, Disposal and Beneficial Use Option for Sewage Sludge (하수슬러지 처리기술 동향 및 최적화 처리방안)

  • Choe, Yong-Su
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF

Production of Dispersion-strengthened Cu-TiB2 Alloys by Ball-milling and Spark-plasma Sintering

  • Kwon, Dae-Hwan;Kum, Jong-Won;Nguyen, Thuy Dang;Dudinad, Dina;Choi, Pyuck-Pa;Kim, Ji-Soon;Kwon, Young-Soon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1205-1206
    • /
    • 2006
  • Dispersion-strengthened copper with $TiB_2$ was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at $650^{\circ}C$ for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly

  • PDF

Characterization of Nanopores on Micropillars Pt Electrodes for Non-Enzymatic Electrochemical Sensor Applications

  • Park, Dae-Joon;Lee, Yi-Jae;Park, Jae-Yeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.161-165
    • /
    • 2007
  • In this paper, mesoporous Pt on micro pillars Pt electrode is newly designed, fabricated, and characterized on silicon substrate for non-enzymatic electrochemical sensor micro-chip integrated with CMOS readout circuitry. The fabricated micro/nano Pt electrode has cylindrical hexangular arrayed nano Pt pores with a diameter of 3.2 nm which is formed on top of the micro pillars Pt electrode with approximately $6{\mu}m$ in diameter, $6{\mu}m$ in space, and $50{\mu}m$ in height. The measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $9.9nA/mm^2,\;6.72{\mu}A/mm^2,\;and\;7.67{\mu}A/mm^2$ in 10mM glucose solution with 0.1M phosphate buffered saline (PBS) solution, respectively. In addition, the measured current responses of the fabricated plane Pt, mesoporous Pt, and mesoporous Pt on the micro pillar Pt electrodes are approximately $0.15{\mu}A/mm^2,\;0.56{\mu}A/mm^2,\;and\;0.74{\mu}A/mm^2$ in 0.1mM ascorbic acid (AA) solution with 0.1M phosphate buffered saline (PBS) solution, respectively. This experimental results show that the proposed micro/nano Pt electrode is highly sensitive and promising for CMOS integrated non-enzymatic electrochemical sensor applications. Since the micro-pillar Pt electrode can also be utilized with a micro-fluidic mixer in the sensor chip, the sensor chip can be much smaller, cheaper, and easier to be fabricated.

Design of Multiband Octa-Phase LC VCO for SDR (SDR을 위한 다중밴드 Octa-Phase LC 전압제어 발진기 설계)

  • Lee, Sang-Ho;Han, Byung-Ki;Lee, Jae-Hyuk;Kim, Hyeong-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.7-11
    • /
    • 2007
  • This paper presents a multiband octa-phase LC VCO for SDR receiver. Four identical LC VCOs are connected by using series coupling transistor to obtain the octa-phase signal and low phase noise characteristic. For a multiband application, a band tuning circuit that consists of a switch capacitor circuit and two MOS varactors is proposed. As the MOS switch is on/off state, the frequency range will be varied. In addition, two varactors make the VCO be immune to process variation of the oscillation frequency. The VCO is designed in 0.18-um CMOS technology, consumes 12mA current from 1.8V supply voltage and operates with a frequency band from 885MHz to 1.342GHz (41% tuning range). As driving sub-harmonic mixer, the proposed VCO covers 3 standards(CDMA 2000 1x, WCDMA, WiBro). The measured phase noise is -105dBc@100kHz, -115dBc@1MHz, -130dBc@10MHz for CDMA 2000 1x, WCDMA, WiBro respectively.

Effect of Transoctylene Rubber(TOR) on the Properties of Natural Rubber/isotactic Polypropylene Blends (Transoctylene rubber(TOR)의 첨가가 NR/isotactic PP 블렌드의 물성에 미치는 영향)

  • Yang, Yung-Chul;Nah, Chang-Woon;Chang, Young-Wook
    • Elastomers and Composites
    • /
    • v.36 no.3
    • /
    • pp.188-194
    • /
    • 2001
  • Thermoplastic elastomers based on dynamically vulcanized NR/TOR/PP (rubber/PP=70/30) blends were prepared in a Haake banbury mixer. Effect of TOR content on the mechanical, dynamic mechanical and thermal stability of the rubber/plastic blends was characterized by UTM, DMTA, and TGA. On the addition of trans-polyoctylene rubber(TOR) to the rubber phase, there was a decrease in compression set and increase in tensile properties, hardness and dynamic properties as well as thermal stability or the elastomeric blends. Improvements in the properties were believed to be due to an increase in crosslink density of the rubber phase and increase in homogeneity of the blends.

  • PDF