• Title/Summary/Keyword: MIT-BIH database

Search Result 122, Processing Time 0.018 seconds

ECG Signal Compression using Feature Points based on Curvature (곡률을 이용한 특징점 기반 심전도 신호 압축)

  • Kim, Tae-Hun;Kim, Sung-Wan;Ryu, Chun-Ha;Yun, Byoung-Ju;Kim, Jeong-Hong;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.624-630
    • /
    • 2010
  • As electrocardiogram(ECG) signals are generally sampled with a frequency of over 200Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently. In this paper, an ECG signal compression method, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes are extracted with the proposed method, which uses local extremum of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes are added according to the iterative vertex selection method. Through the experimental results on the ECG signals from MIT-BIH Arrhythmia database, it is concluded that the vertexes selected by the proposed method preserve all feature points of the ECG signals. In addition, they are more efficient than the AZTEC(Amplitude Zone Time Epoch Coding) method.

Premature Contraction Arrhythmia Classification through ECG Pattern Analysis and Template Threshold (ECG 패턴 분석과 템플릿 문턱값을 통한 조기수축 부정맥분류)

  • Cho, Ik-sung;Cho, Young-Chang;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.437-444
    • /
    • 2016
  • Most methods for detecting arrhythmia require pp interval, diversity of P wave morphology, but it is difficult to detect the p wave signal because of various noise types. Therefore it is necessary to use noise-free R wave. In this paper, we propose algorithm for premature contraction arrhythmia classification through ECG pattern analysis and template threshold. For this purpose, we detected R wave through the preprocessing method using morphological filter, subtractive operation method. Also, we developed algorithm to classify premature contraction wave pattern using weighted average, premature ventricular contraction(PVC) and atrial premature contraction(APC) through template threshold for R wave amplitude. The performance of R wave detection, PVC classification is evaluated by using 6 record of MIT-BIH arrhythmia database that included over 30 PVC and APC. The achieved scores indicate the average of 99.77% in R wave detection and the rate of 94.91%, 95.76% in PVC and APC classification.

PVC Classification by Personalized Abnormal Signal Detection and QRS Pattern Variability (개인별 이상신호 검출과 QRS 패턴 변화에 따른 조기심실수축 분류)

  • Cho, Ik-Sung;Yoon, Jeong-Oh;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1531-1539
    • /
    • 2014
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. In other words, the design of algorithm that exactly detects abnormal signal and classifies PVC by analyzing the persons's physical condition and/or environment and variable QRS pattern is needed. Thus, PVC classification by personalized abnormal signal detection and QRS pattern variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and subtractive operation method and selected abnormal signal sets. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of abnormal beat detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 98.33% in abnormal beat classification error and 94.46% in PVC classification.

An R-wave Detection method in ECG Signal Using Refractory Period (ECG 신호에서 불응기를 이용한 R-파 검출 방법)

  • Kim, Jin-Sub;Kim, Jea-Soo;Kim, Jeong-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.93-101
    • /
    • 2013
  • The accurate detection of R-wave is important for other feature extraction in ECG, and R-wave has a lot of medical information about heart. Numerous R-wave detection algorithms have been studied on the ECG signal shape analysis, but it was difficult to find accurate R-wave when the shape of R-wave is similar to the shape of P-wave. This paper presents an R-wave detection method based on the refractory period that is the period of depolarization and repolarization of the cell membrane after excitation. And we also use the shape of kurtosis in the refractory period. The proposed method is validated using the ECG records of the MIT-BIH arrhythmia database. Experimental results show that the proposed method significantly outperforms other method in case of 105 and 108 record that have R-wave similar to P-wave, as well as other records.

T Wave Detection Algorithm based on Target Area Extraction through QRS Cancellation and Moving Average (QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.450-460
    • /
    • 2017
  • T wave is cardiac parameters that represent ventricular repolarization, it is very important to diagnose arrhythmia. Several methods for detecting T wave have been proposed, such as frequency analysis and non-linear approach. However, detection accuracy is at the lower level. This is because of the overlap of the P wave and T wave depending on the heart condition. We propose T wave detection algorithm based on target area extraction through QRS cancellation and moving average. For this purpose, we detected Q, R, S wave from noise-free ECG(electrocardiogram) signal through the preprocessing method. And then we extracted P, T target area by applying decision rule for four PAC(premature atrial contraction) pattern another arrhythmia through moving average and detected T wave using RT interval and threshold of RR interval. The performance of T wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 95.32%.

Prediction of Transient Ischemia Using ECG Signals (심전도 신호를 이용한 일시적 허혈 예측)

  • Han-Go Choi;Roger G. Mark
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.3
    • /
    • pp.190-197
    • /
    • 2004
  • This paper presents automated prediction of transient ischemic episodes using neural networks(NN) based pattern matching method. The learning algorithm used to train the multilayer networks is a modified backpropagation algorithm. The algorithm updates parameters of nonlinear function in a neuron as well as connecting weights between neurons to improve learning speed. The performance of the method was evaluated using ECG signals of the MIT/BIH long-term database. Experimental results for 15 records(237 ischemic episodes) show that the average sensitivity and specificity of ischemic episode prediction are 85.71% and 71.11%, respectively. It is also found that the proposed method predicts an average of 45.53[sec] ahead real ischemia. These results indicate that the NN approach as the pattern matching classifier can be a useful tool for the prediction of transient ischemic episodes.

  • PDF

A Search for Analogous Patients by Abstracting the Results of Arrhythmia Classification (부정맥 분류 결과의 축약에 기반한 유사환자 검색기)

  • Park, Juyoung;Kang, Kyungtae
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.464-469
    • /
    • 2015
  • Long-term electrocardiogram data can be acquired by linking a Holter monitor to a mobile phone. However, most systems are designed to detect arrhythmia through heartbeat classification, and not just for supporting clinical decisions. In this paper, we propose an Abstracting algorithm, and introduce an analogous pateint search system using this algorithm. An analogous patient searcher summarizes each patient's typical pattern using the results of heartbeat, which can greatly simplify clinical activity. It helps to find patients with similar arrhythmia patterns, which can help in contributing to diagnostic clues. We have simulated these processes on data from the MIT-BIH arrhythmia database. As a result, the Abstracting algorithm provided a typical pattern to assist in reaching rapid clinical decisions for 64% of the patients. On an average, typical patterns and results generated by the abstracting algorithm summarized the results of heartbeat classification by 98.01%.

Minimizing Algorithm of Baseline Wander for ECG Signal using Morphology-pair (Morphology-pair를 이용한 심전도 신호의 기저선 변동 잡음 제거 알고리즘)

  • Kim, Sung-Wan;Kim, Se-Yun;Kim, Tae-Hun;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.574-579
    • /
    • 2010
  • The baseline wander is most fatal noise, because it obstructs reliable diagnosis of cardiac disorder. Thus, in this paper, the morphology-pair is proposed for estimation of baseline wander except P, T-wave and QRS-complex. Proposed Morphology-pair is able to except P, R, T-wave which have characteristics of local maxima. Likewise Q, S-wave such as local minima are excepted by proposed Morphology-pair. The final baseline wander eliminated ECG signal is deducted by subtraction of original ECG and estimated baseline wander. The experimental results based on the MIT/BIH database show that the proposed algorithms produce promising results.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

Adaptive Processing Algorithm Allocation on OpenCL-based FPGA-GPU Hybrid Layer for Energy-Efficient Reconfigurable Acceleration of Abnormal ECG Diagnosis (비정상 ECG 진단의 에너지 효율적인 재구성 가능한 가속을 위한 OpenCL 기반 FPGA-GPU 혼합 계층 적응 처리 알고리즘 할당)

  • Lee, Dongkyu;Lee, Seungmin;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1279-1286
    • /
    • 2021
  • The electrocardiogram (ECG) signal is a good indicator for early diagnosis of heart abnormalities. The ECG signal has a different reference normal signal for each person. And it requires lots of data to diagnosis. In this paper, we propose an adaptive OpenCL-based FPGA-GPU hybrid-layer platform to efficiently accelerate ECG signal diagnosis. As a result of diagnosing 19870 number of ECG signals of MIT-BIH arrhythmia database on the platform, the FPGA accelerator takes 1.15s, that the execution time was reduced by 89.94% and the power consumption was reduced by 84.0% compared to the software execution. The GPU accelerator takes 1.87s, that the execution time was reduced by 83.56% and the power consumption was reduced by 62.3% compared to the software execution. Although the proposed FPGA-GPU hybrid platform has a slower diagnostic speed than the FPGA accelerator, it can operate a flexible algorithm according to the situation by using the GPU.