심장 질환 가운데에서 부정맥은 방치할 경우에 뇌졸중, 심장 마비, 심부전과 같은 심각한 합병증이 발생할 수 있기 때문에 지속적이고 정확한 심전도 관리에 의한 건강 상태의 확인은 임상적 치료에 매우 중요한 요소이다. 그러나, 심전도(Electrocardiogram; ECG) 데이터의 정확한 해석은 전적으로 의료 전문가에 의존하기 때문에 부가적인 시간과 비용을 요구한다. 따라서 본 논문에서는 라이프로그 기반의 비정상적인 맥파 파형의 분석을 통한 의료 플랫폼 개발을 목적으로 부정맥 인식 모듈을 제안한다. 제안하는 방법은 ECG 데이터를 시계열 데이터가 아닌 이미지 형식으로 처리하여 시각적 패턴 인식 기술을 적용한 후, CNN 모델을 이용하여 부정맥을 탐지하는 방법을 제안한다. 본 논문에서 제안한 ECG 데이터의 이미지 타입 변환에 의한 CNN 모델의 부정맥 분류의 유효성 검증하기 위해 MIT-BIH 부정맥 데이터셋을 사용한 결과, 97%의 정확도를 보였다.
본 논문에서는 웨이블릿 변환을 통하며 QRS complex를 검출 하며, 32비트 고정 소수점 연산이 가능한 프로세서에도 동작하도록 알고리즘 최적화 기법을 제시한다. 먼저 입력 ECG 신호를 밴드 패스 필터를 통과 시키고, 3개의 서로 다른 웨이블릿 함수를 하나로 병합한 웨이블릿 함수를 이용하여 웨이블릿 변환을 하며, 다음으로 시간 평균 함수를 뒤에 마지막으로 QRS complex를 검출 한다. 제안 알고리즘은 MIT-BIH arrhythmia database에 적용하여 검증한다. 모든 과정은 32비트 고정 소수점 연산으로 구현되며, 삼각함수 같은 복잡한 연산은 테이블화 하였다. 검출 알고리즘은 컴퓨터 시뮬레이션을 통해 평가 한다.
본 논문은 이상 상황을 탐지하고 모니터링하는 다양한 서비스가 존재한다. 하지만 대부분의 서비스는 화재, 가스누출에 초점을 맞추어 진행되고 있으며, 독거노인과 중증장애인들의 사망 혹은 심정지 등 위급상황에 대하여 사전 예방 및 위급상황 대응이 불가능하다. 본 연구에서는 여러 생체신호 중 가장 위중하다고 판단되는 심박 신호의 이상 상태를 탐지하기 위하여 인공지능 모델을 설계하는 과정에서 적합한 데이터 변형과 모델을 비교한다. 세부적으로는 오픈 의료 데이터 PhysioNet의 MIT-BIH Arrhythmia Database를 이용하여 심전도(ECG) 데이터를 수집하고, 수집한 데이터를 각각 다른 방법으로 데이터를 변형한 후 학습하여 기본 심전도 데이터를 이용해 학습한 인공지능 모델과 비교한다.
본 연구에서는 PVC의 효과적인 검출과 부정맥 판정의 정확성을 높이기 위해 웨이브렛 계수를 이용한 퍼지 시스템을 설계하였다. 제안한 시스템에서 심전도의 QRS군을 Haar 웨이브렛을 이용한 웨이브렛 변환을 통해서 신호의 주파수를 6레벨 대역으로 분할하였다. 본 논문에서 설계한 퍼지 시스템의 성능평가를 위해서 MIT/BIH 데이터 베이스를 입력 신호원으로 사용했다. 그리고 퍼지 규칙을 이용해서 맥박수와 조기심실수축을 멤버쉽 함수로 결정하고, 신경망을 학습시켜서 적용함으로써 비정상치를 효과적으로 검출할 수 있었으며, 또한 부정맥의 판정에 있어서도 95%의 분류성능을 보였다.
본 논문은 심전도(ECG) 신호로부터 조기심실수축(PVC)을 자동 탐지하는 방법으로 이산 웨이블릿 변환과 퍼지 신경망을 이용하는 방안을 제시하고 있다. 심전도 신호를 이산 웨이블릿 변환(DWT)으로 특징을 추출한 후, 퍼지 신경망으로 학습하여 정상 비트와 PVC 비트를 분류한다. 윈도우 크기는 R파를 기준으로 $-31/360{\sim}+32/360$초를 사용하며, 웨이블릿 변환은 d3, d4, d5의 웨이블릿 계수 14개를 사용한다. 퍼지 신경망은 가중 퍼지소속함수 기반 신경망을 사용한다. 본 논문은 벤치마킹 데이터로 MIT-BIH 부정맥 데이터베이스를 사용하여 Shyu 실험군(7개 레코드)에서는 전체 분류율에서 97.04% 보다 높은 99.91%의 신뢰성 있는 결과를 나타내었고, Inan 실험군(40개 레코드)에서는 각각 SE는 82.57% 보다 높은 84.67%, SP는 98.33% 보다 높은 99.39%, 전체 분류율은 96.85% 보다 높은 98.01%의 신뢰성 있는 결과를 나타내었다.
일반적으로 QRS간격은 시작점을 기준으로 끝점까지의 간격을 말하지만 그 기준이 모호하고 Q와 S의 검출이 정확하지 않아 부정맥 분류 성능을 저하시키는 경우가 발생한다. 본 연구에서는 심전도신호 중 가장 큰 피크인 R파를 정확히 검출한 후 이를 기준으로 위상 변이 추적 기법을 적용하여 Q와 S의 시작점과 끝점을 추출하는 방법을 제안한다. 먼저 전처리 과정을 통해 잡음이 제거된 정확한 R파를 검출한다. 이후 심전도신호의 미분값을 통해 QRS패턴을 분류하고, R파를 기준으로 위상이 변화되는 방향과 횟수를 추적함으로써 Q, S의 시작점과 끝점을 추출하는 방법이다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 R파 검출율은 99.60%의 성능을 나타내었고, 위상 변이 추적 기법의 경우 조기심실수축(PVC)이 30개 이상 포함된 MIT-BIH 10개의 레코드를 대상으로 조기심실수축 분류율을 각각 비교 분석한 결과 94.12%로 우수하게 나타났다.
심방세동(Atrial Fibrillation:AF)은 각종 심장질환에서 비교적 빈번히 발생하는 부정맥으로 알려져 있으며, 그 발병률은 연령의 증가와 더불어 점차 증가한다. 전통적으로 심방세동을 검출하는 방법은 시간 영역 분석법과 주파수 영역분석법이 대부분이었다. 하지만 심전도 신호는 잡음의 영향을 많이 받는 환경에서 검출의 정확도가 떨어지며, 시간 주파수 영역 분석법은 RR 간격에 따라 변화하는 불규칙적 리듬에 관한 정보를 정확하게 얻지 못하는 단점이 있다. 본 연구에서는 부호화와 정보 엔트로피에 기반한 AF 패턴 분석 방법을 제안한다. 이를 위해 먼저 RR 간격 데이터를 차분 분할 방식을 통해 부호 서열화 한 후 그 리듬에 대한 패턴을 분석하고 이를 샤논의 정보 엔트로피를 통해 복잡도를 정량화하여 심방세동을 검출하였다. 성능 평가를 위해 10부터 100까지의 문턱값에 따른 엔트로피를 통해 복잡도를 분석하였으며 MIT-BIH 심방세동 데이터베이스를 이용하여 실험하였다.
부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 인공 지능 기반의 부정맥 분류에 많이 사용되고 있다. 본 연구에서는 AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 자기 회귀 모델을 통하여 최적의 QRS와 RR간격을 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 부정맥을 분류하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 훈련 및 분류 정확도를 확인하였다. 성능 평가 결과 PVC는 약 97% 이상의 평균 분류율을 나타내었다.
본 연구에서는 부정맥 판독을 위해 심전도 신호로부터 P파의 강조 및 검출 방법을 제안하였다. 이 방법에서는 고전적인 필터나 이동평균필터를 사용하지 않고 하강 기울기의 변곡점을 검출하기에 효과적인 하강 기울기 추적파를 이용하여 고주파 잡음을 무시해 주는 필터 용도로 사용함과 동시에 진폭이 낮고 불명확한 P파와 T파를 강조해 줌으로써 이들의 검출을 용이하게 하였다. 이 강조 및 검출 방법을 MIT/BIH 데이터에 적용하여 구현하였으며 그 실용성을 확인하였다.
본 논문은 iterated contractive transformations을 이용한 심전도 데이터 압축에 관한 새로운 방법을 제안한다. 이방법은 piecewise self-affine fractal interpolation(PSAFI)에 의해 심전도 신호의 임의 구간들을 표현한다. Piecewise self-affine fractal model은 자기자신의 수축적 유사 변환으로 구성된다고 볼 수 있는 이산 데이터에 사용된다. 제안된 알고리즘은 MIT/BIH arrhythmia 데이터베이스로 평가되었다. PSAFI는 주어진 압축율에서 기존의 직접 압축 방법보다 상대적으로 적은 재생 오차를 나타냈다. 샘플링 주파수는 400Hz이고 resolution은 12bits인 원래 신호에 대해 압축율이 883.9bps일때 평균재생오차(APRD)는 5.39%를 나타냈다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.