• Title/Summary/Keyword: MIMO technology

Search Result 358, Processing Time 0.03 seconds

Boosting the Uplink Throughput of OFDM Systems by Creating Resolvable Interference

  • Mohaisen, Manar;Hui, Bing;Chang, Kyung-Hi
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.113-121
    • /
    • 2011
  • Multiple-input multiple-output with orthogonal frequency division multiplexing technology (MIMO-OFDM) is considered to be the ultimate solution for increasing system throughput and for enhancing communication reliability. In this paper, we propose to increase the uplink (UL) throughput by assigning the same UL resources to multiple single-antenna mobile stations. This leads to the loss of orthogonality among sub-carriers. Thus, at the base station (BS), MIMO-OFDM detection techniques are used to separate the streams of different users assigned the same UL resources. To obtain a realistic performance evaluation, different channel scenarios are applied with different correlation values among the antennas of the users. Simulation results show that the proposed MIMO-OFDM system linearly increases the uplink capacity of the OFDM system while maintaining a mobile station transmitter as simple as that used in a conventional OFDM system. For instance, when 4 users are assigned the same UL resources, the throughput of the proposed system is 3.07 times that achieved by a conventional single input single output OFDM system.

An Efficient Soft-Output MIMO Detection Method Based on a Multiple-Channel-Ordering Technique

  • Im, Tae-Ho;Park, In-Soo;Yoo, Hyun-Jong;Yu, Sung-Wook;Cho, Yong-Soo
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple-input multiple-output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple-channel-ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13-${\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

Blind adaptive receiver for uplink multiuser massive MIMO systems

  • Shin, Joonwoo;Seo, Bangwon
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Herein, we consider uplink multiuser massive multiple-input multiple-output systems when multiple users transmit information symbols to a base station (BS) by applying simple space-time block coding (STBC). At the BS receiver, two detection filters for each user are used to detect the STBC information symbols. One of these filters is for odd-indexed symbols and the other for even-indexed symbols. Using constrained output variance metric minimization, we first derive a special relation between the closed-form optimal solutions for the two detection filters. Then, using the derived special relation, we propose a new blind adaptive algorithm for implementing the minimum output variance-based optimal filters. In the proposed adaptive algorithm, filter weight vectors are updated only in the region satisfying the special relation. Through a theoretical analysis of the convergence speed and a computer simulation, we demonstrate that the proposed scheme exhibits faster convergence speed and lower steady-state bit error rate than the conventional scheme.

Scheduling for Virtual MIMO in Single Carrier FDMA (SC-FDMA) System

  • Kim, Jinwoo;Hwang, In Seok;Kang, Chung Gu
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2015
  • In this paper, we consider a joint frequency-domain scheduling and user-pairing problem for virtual MIMO in the single carrier frequency division multiple access (SC-FDMA) system, e.g., the uplink transmission for third generation partnership project-long term evolution (3GPP-LTE) standard. Due to the subcarrier adjacency constraint inherent to SC-FDMA, its complexity becomes unmanageable. We propose a greedy heuristic algorithm for PF scheduling so as to deal with the complexity issue in this joint problem. It has been shown that its performance can reach up to 90% of its upper bound.

Performance analysis of STTC using time-space ciphering method appropriate for MIMO channel (MIMO 채널에 적합한 시공간 부호 기법으로 STTC의 성능 분석)

  • 권순녀;김동옥;이윤현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.629-632
    • /
    • 2003
  • This paper presents a way to maximize transmission efficiency and reception ability through transmission diversity technology, which can be adapted to wireless multimedia OFDM system. The presented method is a comparative analysis between a case where parameter $\alpha$for time average is 0.3, 1 with consideration of channel presumption with two types of rms delayed proliferation, which is 50nsec, 150nsec, for the performance analysis of STTC(Space-Time Trellis Code) using time-space ciphering method appropriate for MIMO channel, and performance in the case where presumed channel value from long training column section is applied to according frame in a single frame. The result showed that BER brought SNR improvement of 1.0dB in 10-3 when $\alpha$ was 0.3 than using only the long training column, and showed increase of general performance improvement for the sake of time average rather than the case without.

  • PDF

A Robust Observer Design for Nonlinear MIMO Plants using Time-Delayed Signals

  • Lee, Jeong-Wan;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1999
  • In this paper, a robust observer design method for nonlinear multi input multi-output(MINO) plants is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real time computation coordinates, the observer turned out to be computationally efficient and easy to design for nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joints, the control performances using TDO appeared to be similar to those using actual states and superior to those using numerical differentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states reliability and TDO can be effectively used in a real closed-loop system.

  • PDF

Sign-Select Lookahead CORDIC based High-Speed QR Decomposition Architecture for MIMO Receiver Applications

  • Lee, Min-Woo;Park, Jong-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.6-14
    • /
    • 2011
  • This paper presents a high-speed QR decomposition architecture for the multi-input-multi-output (MIMO) receiver based on Givens rotation. Under fast-varying channel, since the inverse matrix calculation has to be performed frequently in MIMO receiver, a high performance and low latency QR decomposition module is highly required. The proposed QR decomposition architecture is composed of Sign-Select Lookahead (SSL) coordinate rotation digital computer (CORDIC). In the SSL-CORDIC, the sign bits, which are computed ahead to select which direction to rotate, are used to select one of the last iteration results, therefore, the data dependencies on the previous iterations are efficiently removed. Our proposed QR decomposition module is implemented using TSMC 0.25 ${\mu}M$ CMOS process. Experimental results show that the proposed QR architecture achieves 34.83% speed-up over the Compact CORDIC based architecture for the 4 ${\times}$ 4 matrix decomposition.

Covariance Matrix Synthesis Using Maximum Ratio Combining in Coherent MIMO Radar with Frequency Diversity

  • Jeon, Hyeonmu;Chung, Yongseek;Chung, Wonzoo;Kim, Jongmann;Yang, Hoongee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.445-450
    • /
    • 2018
  • Reliable detection and parameter estimation of a radar cross section(RCS) fluctuating target have been known as a difficult task. To reduce the effect of RCS fluctuation, various diversity techniques have been considered. This paper presents a new method for synthesizing a covariance matrix applicable to a coherent multi-input multi-output(MIMO) radar with frequency diversity. It is achieved by efficiently combining covariance matrices corresponding to different carrier frequencies such that the signal-to-noise ratio(SNR) in the combined covariance matrix is maximized. The value of a synthesized covariance matrix is assessed by examining the phase curves of its entries and the improvement on direction of arrival(DOA) estimation.

A Review of Fixed-Complexity Vector Perturbation for MU-MIMO

  • Mohaisen, Manar
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.354-369
    • /
    • 2015
  • Recently, there has been an increasing demand of high data rates services, where several multiuser multiple-input multiple-output (MU-MIMO) techniques were introduced to meet these demands. Among these techniques, vector perturbation combined with linear precoding techniques, such as zero-forcing and minimum mean-square error, have been proven to be efficient in reducing the transmit power and hence, perform close to the optimum algorithm. In this paper, we review several fixed-complexity vector perturbation techniques and investigate their performance under both perfect and imperfect channel knowledge at the transmitter. Also, we investigate the combination of block diagonalization with vector perturbation outline its merits.

Monitoring and Scheduling Methods for MIMO-FIFO Systems Utilizing Max-Plus Linear Representation

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.23-33
    • /
    • 2008
  • This paper proposes an approach to monitoring and scheduling methods for repetitive MIMO-FIFO DESs. We use max-plus algebra for modeling and formulation, known as an effective approach for controller design for this type of system. Because a certain type of linear equations in max-plus algebra can represent the system's behavior, the principal concerns in past researches were how to solve the equations. However, the researches focused mainly on analyses of the relation between inputs and outputs of the system, which implies that the changes or the slacks of internal states were not clarified well. We first examine several properties of the corresponding state variables, which contribute to finding and tracing the float times in each process. Moreover, we provide a rescheduling method that can take into account delays or changes of the internal states. These methods would be useful in schedule control or progress management.