• 제목/요약/키워드: MIMO system identification

검색결과 33건 처리시간 0.03초

Applications of Block Pulse Response Circulant Matrix and its Singular Value Decomposition to MIMO Control and Identification

  • Lee, Kwang-Soon;Won, Wan-Gyun
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.508-514
    • /
    • 2007
  • Properties and potential applications of the block pulse response circulant matrix (PRCM) and its singular value decomposition (SVD) are investigated in relation to MIMO control and identification. The SVD of the PRCM is found to provide complete directional as well as frequency decomposition of a MIMO system in a real matrix form. Three examples were considered: design of MIMO FIR controller, design of robust reduced-order model predictive controller, and input design for MIMO identification. The examples manifested the effectiveness and usefulness of the PRCM in the design of MIMO control and identification. irculant matrix, SVD, MIMO control, identification.

폐로식별기법에 의한 TRMS 모델링 (Modeling for Twin Rotor System Using CLID)

  • 이정경;권오규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.644-646
    • /
    • 2004
  • The closed loop identification(CLID) is a very useful method for on-line applications since it can identify the plant in the closed-loop system composed of the plant and the controller. There are some literatures on CLID, but they and mainly focused on SISO(Single-Input/Single-Output) problem. In this paper, a CLID method is proposed for MIMO(Multi-Input/Multi-Output) systems. The CLID method is applied to a MIMO benchmark plant, TRMS(Twin-Rotor MIMO System). To illustrate the performance of the closed-loop system identification., unit step responses in the TRMS are represented and compared with the open-loop identification via some simulation.

  • PDF

해석적인 정보를 고려한 다중입력을 받는 다자유도계 구조물의 시스템 규명 기법 개발 (System Identification of MIMO Systems Considering Analytically Determined Information)

  • 김상범;스펜서;윤정방
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.712-717
    • /
    • 2005
  • This paper presents a system identification method for multi-input, multi-output (MIMO) systems, by which a rational polynomial transfer function model is identified from experimentally determined frequency response function data. Analytically determined information is incorporated in this method to obtain a more reliable model, even in the frequency range where the excitation energy is limited. To verify the suggested method, shaking table test for an actively controlled two-story, bench-scale building employing an active mass damper is conducted. The results show that the proposed method is quite effective and robust for system identification of MIMO systems.

Extending the SRIV Identification Algorithm to MIMO LMFD Models

  • Akroum, Mohamed;Hariche, Kamel
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권1호
    • /
    • pp.135-142
    • /
    • 2009
  • In this paper the Simplified Refined Instrumental Variable (SRIV) identification algorithm for SISO systems is extended to MIMO systems described by a Left Matrix Fraction Description (LMFD). The performance of the extended algorithm is compared to the well-known MIMO four-step instrumental variable (IV4) algorithm. Monte Carlo simulations for different signal to noise ratios are conducted to assess the performance of the algorithm. Moreover, the algorithm is applied to a simulated quadruple tank process.

반복적 설계 방식을 사용한 다중입출력 자기베어링 시스템의 식별 및 제어기 성능 향상 (Iterative Control-Relevant Identification and Controller Enhancement of MIMO Magnetic Bearing Rigid Rotor)

  • 한동철;이상욱;안형준;이상호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.493-498
    • /
    • 2000
  • The magnetic bearing systems are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing systems, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics-and non-linearity of magnetic bearings itself. "Identification for control" - joint optimization of system identification and controller design- is proposed to get the limited-order model which is suited for the design of high-performance controller. We applied the joint identification/controller design scheme to MIMO rigid rotor system supported by magnetic bearings. Firs, we designed controller of a nonlinear simulation model of MIMO magnetic bearing system with this scheme and proved its feasibility. Then, we performed experiments on MIMO rigid rotor system supported by magnetic bearings, and the performance of closed-loop system is improved gradually during the iteration.

  • PDF

PRBS 시스템 규명 기법 적용 멀티 열펌프의 다중입출력 제어특성에 관한 실험적 연구 (Experimental Study on the MIMO Control Algorithm of a Multi-Heat Pump Based on PRBS Identification Scheme)

  • 최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.16-24
    • /
    • 2013
  • A multi-heat pump provides the benefits of comfort, energy conservation and easy maintenance. Recently, the multi-heat pump has been widely employed in small and medium-sized buildings. However, the control algorithm of the multi-heat pump are limited in the open literature due to complicated operating conditions. In this study, the MIMO control algorithm using integral optimum regulator was designed and the control performance of it was analyzed. In addition, system model of the control plant was developed by PRBS system identification scheme. The MIMO controller adopting the integral optimum regulator yielded satisfactory control performance results.

MISO 고차 ARX 모델 기반의 MIMO 상태공간 모델의 모델인식: 설계와 적용 (Identification of MIMO State Space Model based on MISO High-order ARX Model: Design and Application)

  • 원왕연;윤지은;이광순;이봉국
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.67-72
    • /
    • 2007
  • 부분 최소자승회귀, 균형 잡힌 realization, 균형 잡힌 truncation을 결합함으로써, MIMO 상태공간 모델의 모델인식을 위한 효과적인 방법이 개발되었다. 개발된 방법에서 MIMO 시스템은 고차 ARX 모델로 표현되는 다중 MISO 시스템으로 분해된다. 이 때, ARX 모델의 파라미터는 부분 최소자승회귀에 의해 추정된다. 그 후, realization을 통해 각각의 MISO ARX 전달함수에 대한 MISO 상태공간 모델이 만들어지며, MIMO 상태공간 모델로 결합된다. 최종적으로, 균형 잡힌 realization과 균형 잡힌 truncation을 통해 최소의 균형 잡힌 MIMO 상태공간 모델이 얻어진다. 제안된 방법은 고압 $CO_2$ 용해도 측정 실험 장치의 온도제어를 위한 모델 예측 제어의 설계에 적용되었다.

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF

OFDM MIMO radar waveform design for targets identification

  • Bai, Ting;Zheng, Nae;Chen, Song
    • ETRI Journal
    • /
    • 제40권5호
    • /
    • pp.592-603
    • /
    • 2018
  • In order to obtain better target identification performance, an efficient waveform design method with high range resolution and low sidelobe level for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar is proposed in this paper. First, the wideband CP-based OFDM signal is transmitted on each antenna to guarantee large bandwidth and high range resolution. Next, a complex orthogonal design (COD) is utilized to achieve code domain orthogonality among antennas, so that the spatial diversity can be obtained in MIMO radar, and only the range sidelobe on the first antenna needs suppressing. Furthermore, sidelobe suppression is expressed as an optimization problem. The integrated sidelobe level (ISL) is adopted to construct the objective function, which is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The numerical results demonstrate the superiority in performance (high resolution, strict orthogonality, and low sidelobe level) of the proposed method compared to existing algorithms.