• Title/Summary/Keyword: MIMO channels

Search Result 219, Processing Time 0.023 seconds

Simulation Models for Investigation of Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.765-773
    • /
    • 2008
  • Spatial correlation is a result of insufficient antenna spacing among multiple antenna elements, while temporal correlation is caused by Doppler spread. This paper compares the effect of spatial and temporal correlation in order to investigate the performance of multiuser scheduling algorithms in multiple-input multiple-output (MIMO) broadcast channels. This comparison includes the effect on the ergodic capacity, on fairness among users, and on the sum-rate capacity of a multiuser scheduling algorithm utilizing statistical channel state information in spatio-temporally correlated MIMO broadcast channels. Numerical results demonstrate that temporal correlation is more meaningful than spatial correlation in view of the multiuser scheduling algorithm in MIMO broadcast channels. Indeed, the multiuser scheduling algorithm can reduce the effect of the Doppler spread if it exploits the information of temporal correlation appropriately. However, the effect of spatial correlation can be minimized if the antenna spacing is sufficient in rich scattering MIMO channels regardless of the multiuser scheduling algorithm used.

  • PDF

Rate Bounds for MIMO Relay Channels

  • Lo, Caleb K.;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • This paper considers the multi-input multi-output (MIMO) relay channel where multiple antennas are employed by each terminal. Compared to single-input single-output (SISO) relay channels, MIMO relay channels introduce additional degrees of freedom, making the design and analysis of optimal cooperative strategies more complex. In this paper, a partial cooperation strategy that combines transmit-side message splitting and block-Markov encoding is presented. Lower bounds on capacity that improve on a previously proposed non-cooperative lower bound are derived for Gaussian MIMO relay channels.

Independent Component Analysis Based MIMO Transceiver With Improved Performance In Time Varying Wireless Channels

  • Uddin, Zahoor;Ahmad, Ayaz;Iqbal, Muhammad;Shah, Nadir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2435-2453
    • /
    • 2015
  • Independent component analysis (ICA) is a signal processing technique used for un-mixing of the mixed recorded signals. In wireless communication, ICA is mainly used in multiple input multiple output (MIMO) systems. Most of the existing work regarding the ICA applications in MIMO systems assumed static or quasi static wireless channels. Performance of the ICA algorithms degrades in case of time varying wireless channels and is further degraded if the data block lengths are reduced to get the quasi stationarity. In this paper, we propose an ICA based MIMO transceiver that performs well in time varying wireless channels, even for smaller data blocks. Simulation is performed over quadrature amplitude modulated (QAM) signals. Results show that the proposed transceiver system outperforms the existing MIMO system utilizing the FastICA and the OBAICA algorithms in both the transceiver systems for time varying wireless channels. Performance improvement is observed for different data blocks lengths and signal to noise ratios (SNRs).

Massive MIMO TWO-Hop Relay Systems Over Rician Fading Channels

  • Cao, Jian;Yu, Shujuan;Yang, Jie;Zhang, Yun;Zhao, Shengmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5410-5426
    • /
    • 2019
  • With the advent of the fifth-generation (5G) era, Massive multiple-input multiple-output (MIMO) relay systems have experienced the rapid development. Recently, the performance analysis models of Massive MIMO relay systems have been proposed, which are mostly based on Rayleigh fading channels. In order to create a more suitable model for 5G Internet of Things scenarios, our study is based on the Rician fading channels, where line-of-sight (LOS) path exists in the channels. In this paper, we assume the channel state information (CSI) is perfect. In this case, we use statistical information to derive the analytical exact closed-form expression for the achievable sum rate of the uplink for the Massive MIMO two-hop relay system over Rician fading channels. Moreover, considering the different communication scenarios, we derive the analytical exact closed-form expression for the achievable sum rates of the uplink for other three scenarios. Finally, based on these expressions, we make simulations and analyze the performance under different transmit powers and Rician-factors, which provides a theoretical basis and reference for further research.

Performance Analysis of MIMO Detection in Frequency Selective Rayleigh Fading Channels (주파수 선택적 Rayleigh 페이딩 채널에서의 MIMO 검출 성능 연구)

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.974-979
    • /
    • 2009
  • The BER performance of a MIMO detection scheme on frequency selective Rayleigh fading channels is analytically discussed. The presented MIMO detection scheme consists of temporal and spatial combiners followed by a ZF detector. It is shown that for a MIMO system with $N_T$ transmit antennas, $N_R$ receive antennas, and L resolvable multipath components, it achieves the diversity order of $LN_R-N_T+1$. In frequency selective Rayleigh fading channels, an analytical error rate expression of the systems is also provided and the analytical error performance is compared with the simulated results.

Sum-Rate Capacity with Fairness in Correlated MIMO Broadcast Channels

  • Lee, Seung-Hwan;Kim, Jin-Up
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.124-129
    • /
    • 2009
  • Although the maximum sum-rate capacity of multiple-input multiple output(MIMO) broadcast channels(BCs) can be achieved by dirty-paper coding(DPC), the results were obtained without fairness considerations in uncorrelated MIMO channels. In this paper, we propose new multiuser scheduling algorithms, which find a best user set for approaching the maximum sum-rate capacity while maintaining fairness among users. We analyze the performance of the proposed algorithms using zero-forcing dirty paper coding(ZF-DPC) in the correlated MIMO BCs for throughput and delay fairness, respectively. Numerical results demonstrate that a large time window can reduce the average throughput difference between users, but it increases head-of-line(HOL) delay jitters in the case of delay fairness.

Precoding Method for Increasing System Capacity in Multiuser MIMO Downlink Channels (다중사용자 MIMO 하향링크 채널 환경에서 시스템 용량 향상을 위한 프리코딩 기법)

  • Kim, Kwang-Yoon;Lee, Jong-Sik;Koo, Sung-Wan;Yang, Jea-Su;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.12-16
    • /
    • 2008
  • In this paper, we study precoding techniques for co-channel interference suppression in multiuser MIMO systems. DPC is optimal techniques to achieve the system capacity of multiuser MIMO downlink channels. DPC is not proper in practical wireless systems because complexity is very high. So block diagonal precoding for multiuser MIMO downlink channel is studied. The block diagonal precoding is used to suppress co-channel interference between multiuser. Block diagonal precoding method, whose complexity is reduced by modified null space operation, change multiuser MIMO channel to multiple single-user MIMO channel. We also use V-BLAST decoder in receiver. V-BLAST decoder can achieve increased system capacity in proportion to the number of users. We show improved system performance by using computer simulation.

  • PDF

Performance Evaluation of High-performance MIMO-OFDM System using Carrier Interferometry Codes in Frequency Selective Fading Channels (주파수 선택적 페이딩 채널에서 반송파 간섭 부호를 이용한 고성능 MIMO-OFDM 시스템의 성능분석)

  • Seo Wan-woo;Chung Yeon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.8
    • /
    • pp.1643-1648
    • /
    • 2005
  • MIMO system takes advantage of the spatial diversity obtained by spatially separated antennas for high- performance and high-capacity broadband wireless access. In this paper, we propose Carrier Interferometry coded MIMO-OFDM system (MIMO-CI/OFDM) which provides frequency and spatial diversity. One combined diversity gains featly improve the performance of OFDM systems. To perform a performance analysis, we have used SPW platform that provides an easy tool to analyze the performance. The results show that the performance of MIMO-CI/OFDM shows an approximately 4dB gain over the MIMO-OFDM even in highly frequency selective fading channels.

Triangulation Algorithm for Multi-user Spatial Multiplexing in MIMO Downlink Channels (MIMO 다운링크 채널에서 다중사용자 공간다중화를 위한 알고리즘)

  • Lee, Heun-Chul;Paulraj, Aroyaswami;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.45-54
    • /
    • 2010
  • This paper studies the design of a multiuser multiple-input multiple-output (MIMO) system, where a base station (BS) transmits independent messages to multiple users. The remarkable "dirty paper coding (DPC)" result was first presented by Costa that the capacity does not change if the Gaussian interference is known at the transmitter noncausally. While several implementable DPC schemes have been proposed recently for single-user dirty-paper channels, DPC is still difficult to implement directly in practical multiuser MIMO channels. In this paper, we propose a network channel matrix triangulation (NMT) algorithm for utilizing interference known at the transmitter. The NMT algorithm decomposes a multiuser MIMO channel into a set of parallel, single-input single-output dirty-paper subchannels and then successively employs the DPC to each subchannel. This approach allows us to extend practical single-user DPC techniques to multiuser MIMO downlink cases. We present the sum rate analysis for the proposed scheme. Simulation results show that the proposed schemes approach the sum rate capacity of the multiuser MIMO downlink at moderate signal-to-noise ratio (SNR) values.