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Rate Bounds for MIMO Relay Channels

Caleb K. Lo, Sriram Vishwanath, and Robert W. Heath, Jr.

Abstract: This paper considers the multi-input multi-output
(MIMO) relay channel where multiple antennas are employed by
each terminal. Compared to single-input single-output (SISO) re-
lay channels, MIMO relay channels introduce additional degrees
of freedom, making the design and analysis of optimal coopera-
tive strategies more complex. In this paper, a partial cooperation
strategy that combines transmit-side message splitting and block-
Markov encoding is presented. Lower bounds on capacity that im-
prove on a previously proposed non-cooperative lower bound are
derived for Gaussian MIMO relay channels.

Index Terms: Dirty-paper coding, multi-input multi-output (MIMO)
systems, relay channels, superposition coding.

I. INTRODUCTION

Mesh networks that support multithop communication form an
integral part of future-generation wireless communications [1]-
[3]. Relay channels are the fundamental building blocks of mul-
tthop mesh networks. From [4], a discrete memoryless relay
channel is defined by (X7 x X, p(y, y1|x1,22),Y x V1 ). Here,
Xy, Ao, V1, and Y are finite sets corresponding to the transmit-
ter, the relay, and the receiver as shown in Fig. 1.

Relay channels were introduced in [5] and upper bounds on
their capacity were derived in [6]. Full-duplex relay channels
were first analyzed from an information-theoretic perspective
in [4], where inner and outer bounds were derived and exact ca-
pacity expressions were obtained for special cases such as the
physically degraded and Gaussian degraded relay channels. The
information-theoretic analysis in [4] relied on cooperation be-
tween the transmitter and the relay induced by block-Markov
encoding.

Achievable rates in relay channels can be further improved
via multi-input multi-output (MIMO) technology [7]1-[10]. It
has been shown that the capacity of a MIMO channel can
scale linearly as the minimum of the number of transmit and
receive antennas [11]. This encouraging result has led to re-
search on multiuser MIMO channels such as Gaussian multiple
access (MAC) [12]-[15] and broadcast (BC) [16]-[19] chan-
nels. Although discrete memoryless relay channels were ana-
lyzed decades ago, MIMO relay channels have only recently
been studied [20]. As MIMO is an integral aspect of indus-
try standards such as [EEE 802.16e [21], and relaying is also
being considered for practical implementation [22], it is nat-
ural to consider the performance limits of MIMO relaying. In
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Fig. 1. Discrete memoryless relay channel.

particular, MIMO relaying has gained increasing attention re-
cently, and results have been obtained in terms of capacity scal-
ing laws in large networks [23], capacity scaling laws for two-
way relaying [24], and optimal precoder design [25].

In [20], a Gaussian relay channel with multiple antennas at
each terminal is considered. Upper and lower bounds on capac-
ity are shown for both deterministic and Rayleigh fading chan-
nels. The lower bounds for the case of fixed channels in [20]
arise from a non-cooperative transmit strategy. Higher achiev-
able rates than those yielded by the non-cooperative approach
in [20] can be obtained by observing that MIMO relay channels
inherently contain more degrees of freedom than single-input
single-output (SISO) relay channels, where each terminal em-
ploys only a single antenna.

We assume that the relay performs partial decode-and-
forward operations, where the relay decodes a portion of the
transmitter’s codeword, encodes the decoded message using
its own codebook, and sends the encoded message to the re-
ceiver. In a MIMO relay channel, the channel eigenmodes
can be exploited to optimize the cooperative role of the re-
lay. Thus, coding strategies such as transmit-side message split-
ting [4], [26] can increase the achievable rate for MIMO relay
channels. |

In Section V, we consider a simple numerical example that
illustrates the role that the channel eigenmodes play in optimiz-
ing the cooperative role of the relay for the MIMO case. One
scenario that we consider in Section V involves the transmitter-
to-relay vector channel being orthogonal to the vector direct
link. In particular, this notion of orthogonality is a special case
of the orthogonal relay channel considered in [27], where the
general partial decode-and-forward strategy in [4, Theorem 7]
is shown to be capacity-achieving for both discrete-memoryless
and Gaussian cases. For the Gaussian case, the cooperative role
of the relay is optimized by power allocation over both com-
ponents of the transmitter’s codeword, which i1s analogous to
power allocation over the channel eigenmodes for the MIMO
case.

We present transmission strategies that rely on message split-

1These lower bounds are special cases of [4, Theorem 7], but are of interest
as they are applied to the MIMO relay channel and provide intuition about the
structure of good coding strategies for MIMO relaying.
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ting to support varying levels of cooperation between the trans-
mitter and the relay in a MIMO relay channel. In this policy,
the transmitter has two messages and chooses its codeword as a
function ot both of them; the relay, though, only has to decode
one of these messages. The key intuition behind the application
of message splitting to MIMO relaying is as follows: For the
Gaussian SISO relay channel, while message splitting increases
the average throughput [28, 29], it is not a capacity-achieving
strategy. This 1s based on the fact that in a Gaussian SISO re-
lay channel, the received signals at the relay and the receiver
can be statistically ordered. On the other hand, the received sig-
nals in a Gaussian MIMO relay channel cannot be statistically
ordered. In particular, the channel eigenmodes determine the op-
timal level of cooperation between the transmitter and the relay
in a MIMO relay channel, which is measured by how the trans-
mitter chooses its codeword as a function of both messages.

We stress that our message splitting strategies are spe-
cial cases of the partial cooperation approach in [4, Theo-
rem 7]. Since a direct application of the general coding strat-
egy in [4, Theorem 7] to Gaussian MIMO relay channels would
require a computationally intensive optimization over several
auxiliary random variables, we consider simplified coding ap-
proaches and obtain closed-form achievable rate expressions.

We propose lower bounds on the capacity of the MIMO relay
channel by utilizing transmit-side message splitting. In partic-
ular, we consider both superposition coding and precoding at
the transmitter. For the case of precoding in a Gaussian MIMO
relay channel, dirty-paper coding [30] is employed at the trans-
mitter. Our proposed lower bounds obtained via a combination
of transmit-side message splitting and block-Markov encoding
improve on the lower bounds from [20] that are obtained by a
non-cooperative transmit strategy that does not employ block-
Markov encoding. The block-Markov encoding that we employ
differs from the approach in [4] in that the relay cooperates
with the transmitter over two consecutive transmission blocks
to transmit only one of the transmitter’s two messages. The non-
cooperative approach in [20] is actually a special case of our
proposed strategies. We also perform a simple numerical analy-
sis that illustrates how the achievable rate from our proposed
strategies depends on the exact channel state and not just on the
channel norms.

The rate bounds in this paper along with an initial ver-
sion of the numerical results in Fig. 4 were initially presented
in [31]. This paper contains the full proofs of some of the key
rate bounds, which lends valuable insights on the key encoding
and decoding mechanisms for transmit-side message splitting in
the MIMO relay channel. We have also obtained revised numer-
ical results for Fig. 4. In addition, we have added Figs. 5 and 6,
which illustrate the impact of system topology on the derived
rate bounds.

This paper is organized as follows: In Section II we de-
scribe the system model. Section III reviews the upper and
lower bounds on capacity from [20] for the Gaussian MIMO
relay channel. In Section IV, we present our message split-
ting strategies for Gaussian MIMO relay channels along with
their associated achievable rates. Numerical results are given in
Section V. We conclude the paper in Section VI. The APPEN-
DIX contains rigorous derivations of some of the achievable rate
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Fig. 2. Gaussian MIMO relay channel.

expressions.

We use boldface notation for matrices and vectors; uppercase
notation is used for matrices while lowercase notation is used for
vectors. E represents mathematical expectation. Re(x) denotes
the real part of a complex number x. For a matrix A, AJ‘, tr(A),
and det(A) denote the transpose conjugate, trace, and determi-
nant, respectively of A while A > 0 means that A is positive
semi-definite. SNR represents signal-to-noise ratio. I1x denotes
the K x K identity matrix. We use CA (b, C) to represent the
circularly symmetric complex Gaussian distribution with mean
b and covariance matrix C. For a set R, ||R|| denotes the cardi-
nality of R.

II. SYSTEM MODEL

Consider the Gaussian MIMO full-duplex relay channel il-
lustrated in Fig. 2. Let x; and x5 be the M; x 1 and M, x 1
transmitted signals from the transmitter and the relay. Let y and
y, bethe N, x 1 and N, X 1 received signals at the receiver and
the relay. Define H;, Hg, and H3 as V. X M;, Ny X My, and Ny
x M, channel gain matrices. Define z and z, as independent NV,
x 1 and N, x 1 circularly-symmetric complex Gaussian noise
vectors with distributions CA(0, Iy,) and CA(0, Iy, ).

We assume that the transmitter is subject to a power constraint
E(x];xl) < M, and that the relay is also subject to a power con-

straint E(xéxg) < M,.. We also assume that the relay has two
sets of antennas, with one set for the receiver and one for the
transmitter, so it operates in a full-duplex mode. The relay also
cancels out interference from its transmitter array at its receiver
array. In addition, we assume that all channel matrices are fixed
and known at all three terminals and that z and z; are uncorre-
lated with x; and x3. We do not consider fading channels in this
paper.

We define parameters related to the SNR at the receiver and
at the relay as v; = SNR/M;, 72 = SNRo/M;, and 3 =
SNR3 /M, where SNR; and SNRj are the expected SNR val-
ues for x; after fading at each receive antenna at the relay and
the receiver, and SNR3 is the expected SNR for x» after fading
at each receive antenna at the receiver [9].

With these definitions, the received signals at the relay and at
the receiver are

y1 - \/ ,Yllllxl + zl) (l)
y = /veHox1 + /sHsxg +Z.
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A. Weak Typicality

Our proofs in this paper rely on the notion of weak
typicality [32]. Let X ~ p(z) be a random variable. The set

Agn) (X) of weakly typical sequences z™, where p(z") =

H?:l p(ﬂ?g) is

AN (X) = {x” :

— %logp(a:”) — H(X)' < e}.

Note that our results for discrete memoryless channels based
on finite alphabet codebooks can be generalized in a straight-
forward manner to Gaussian channels with Gaussian code-
books. This generalization is based on applying weak typicality
to continuous distributions that are subject to second moment
constraints {32].

III. BACKGROUND

It was shown in [4, Section III] that the capacity C of a gen-
eral relay channel is upper-bounded as
C < max min{l(X;Y,Y1|X3), (X1, X2;Y)}

p(ml ,$2)

2)

where the first term in the minimization is the rate from the
transmitter to the relay and the receiver and the second term is
the rate from the transmitter and the relay to the receiver.

Now, let x; and x> be random vectors with mean zero and
covariance matrices X;; = E(xix}). The authors of [20] estab-
lished the following capacity upper bound and lower bound for
the case where the channel gains are fixed and known at each
terminal.

Lemma 1: [20, Sec. III] An upper bound on the capacity of
the Gaussian MIMO relay channel is given by

cE<cl = min(CY¥, C5)

upper max

0<p<1,¥11,3022

(3)

where tr(2211) < My, r(2os) < M, and
CE £ log[det(In,+

()] )
v/ 72Ha ﬁﬂz ’

02G £ infa>0 log[det(INt —+ (’}’2 -+ £ ’}’2’}’3)H2211H£

+(vs + ay/A273)Hs S22 HY ).
(4)

As stated in [20, Sec. IIIA], p represents the correlation between
x1 and x». Also, a 1s a constant that arises from the vector-valued
inequality in [20, Lemma 3.2]. In addition, C¥ and C§ repre-
sent the maximum sum rate across the transmitter-side broad-
cast cut and receiver-side multiple-access cut, respectively, in
the Gaussian MIMO relay channel.

Lemma 2: [20, Sec. III] A lower bound on the capacity of
the Gaussian MIMO relay channel is given by

C% > Clpyer = max(C¢, min(C5,CF)) (5
where
C$ £ maxy,, log[det(Iy, + v.Ho X1 HY)J,
C§$ £ maxy,, logldet(In, + ’ylHlEllHJ{)],
Of = maxs;.,., log:det(INt -+ ’)/3H3222H-];- ©)

(In, + voHy % H)~1)]
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with

11 = arg max log[det(In, + ’YlH1211HD]- (7
221170

Our objective is to use transmit-side message splitting to im-
prove upon the bound in Lemma 2. We outline this strategy in
the next section.

IV. TRANSMIT-SIDE MESSAGE SPLITTING

Next we describe the transmission strategy that is employed
in this paper. We divide the transmit message into two compo-
nents, denoted by the random variables w,, and w,. w, 1s the
message that is decoded by the relay and is thus cooperatively
sent by the transmitter-relay pair to the receiver. w,,, however, is
intended to be decoded only by the receiver, and thus 1s a source
of “interference” at the relay that is known a-priori at the trans-
mitter.

We consider two classes of transmission strategies with this
setup. The first is superposition coding, where codebooks for
w, and w, are determined separately and then simply super-
posed (added to one another) at the transmitter. The second strat-
egy is to utilize precoding at the transmit end, where intuitively
the transmitter attempts to mitigate the interference caused by
W, to the desirable signal corresponding to w,, at the relay. For
both strategies, the transmitter and the relay cooperate in block-
Markov encoding of w,,. |

Note that the receiver must determine both w, and w, to
decode the transmit message. Thus, if R, denotes the rate for
the codebook corresponding to w, and R, that for w,, the net
achievable rate for both superposition coding and precoding is
R = R, + R,. Assuming the receiver successively decodes
w, and w,, the order in which they are decoded impacts their
rates. In this paper, we use both decoding orders and choose the
order that maximizes the overall rate.

Let u and v be auxiliary variables representing the contribu-
tion of w,, and w,, respectively to x;. Define 32,,, 3, and 33,
to be the covariance matrices of u, v, and X5, respectively. Also,
define
E(ux})

)N

E(xzu')

and B = [\/72H2 /y3H3]. In this case, E(uu’) = X,. In
addition, define X}, Ao, U, and V as the finite alphabets for x;,

Xo, U, and v, respectively.

A

A. Superposition Coding

Consider the system illustrated in Fig. 3. Assume that the re-
ceiver attempts to decode w,, before decoding w,,. Let R, ,, be
the achievable rate for this case. By applying the partial coop-
eration strategy of [4, Theorem 7] to this case, it can be proved
that

Rsc,u — Sup (Rsc,u,l + Rsc,u,Q) (8)
p{x1,x2,u,0)
where
Rsc,u.,l — min(I(U;Ylle),I(U, XQ;Y)), (9)

Rsc,u,2 — I(V, Yan X2)
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Fig. 3. Gaussian MIMO relay channel with superposition coding.

and the supremum is taken over all joint distributions

p(331, L2, U, U) - p($2)p(u‘$2)p(v)p($1 ﬂ'u’a ’U)

on X7 x Xy xU x V. In particular, I(U; Y71|X5) is the maximum
signaling rate for w, over the transmitter-to-relay link. Also,
I(U, X3;Y) is the maximum signaling rate for w,, over the ef-
fective multiple-access channel from the transmitter and relay to
the receiver. In addition, I(V; Y'|U, X3) is the maximum signal-
ing rate for w,, over the transmitter-to-receiver link.

For the Gaussian MIMO relay channel, we employ Gaussian
codebooks for u and v at the transmitter. Let C = (3, —

E(ux%)E;zlE(xzuT) +3,,). We prove in APPENDIX VI-A that

det (INT + ’)/1H1CHJ{)

I(U; Y1|1X5) = log , (10)
det (INT n fyllevH{)
det (In, +12H; %, H} + BAB! )
I(U: XQaY) — 1Og ’
det (INt + f}/QHQEvHE)
(11)
and

I(V;Y|U, X3) = log(det(Iy, + v2HoZ,HL)).  (12)

Now assume that the receiver attempts to decode w, before
decoding w,,. Let R, , be the achievable rate for this case. By

applying the partial cooperation strategy of [4, Theorem 7] to
this case, it can be proved that

Rsc,v — SUup (Rsc,v,l + Rsc,v,2) (13)
p(x1,x2,u,v)
where
Rscw1 = min(I(U; Y1 Xs), I(U, Xo; Y|V)), (14)

RSC,'U,Q — I(V; Y),
and the supremum is taken over all joint distributions

p(xla L2, U, U) — p(xg)p(u|$2)p(’u)p(m1 |’U,, ’U)

OnX]_XXQ XU X V.
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In this case our choice of Gaussian codebooks for u and v in
a Gaussian MIMO relay channel yields

det (INt + "}QHQE»{,HE ~+ BABT)

I{V;Y) = log (15)
det (INt + BABT)
which is analogous to the rate in (12) and
I(U, X2;Y|V) = log(det(Iy, + BABT)) (16)

which is analogous to the rate in (11) while I(U; Y1|X5) is the
same as 1n (10).

The objective is to choose the decoding order that yields a
higher overall rate. We now state the following intuitively obvi-
ous result, which will not require a formal proof.

Proposition 1: Let R, be the maximum signaling rate for
the Gaussian MIMO relay channel where the transmitter em-
ploys superposition coding. Then

Rsc — maX(Rsc,ua Rsc,'u) > nge'r (17)

where C__is given in Lemma 2.

By setting v = x; and u = 0, we can achieve Cf. Also, by
setting u = X1, v = 0 and having the relay employ a codebook of
the same cardinality as that of the codebook at the transmitter,
we can achieve at least min(C§’, C5).

B. Precoding

Instead of superposition coding, consider a strategy where the
transmitter uses precoding to mitigate the interference caused
by w, to the desired signal corresponding to w, at the relay.
Assume that the receiver attempts to decode w,, before decoding

w,. Let Ry, ,, be the achievable rate for this case. It is proved
in APPENDIX B that

Rpfre,u — sSup
p($1 y L2 ,’U,,’U)

(Rprew1 + Rpreu,2) (18)

where

Rp're,u,l — IIllIl(I(U, Yl |X2) — I(U, V‘XQ), I(U, Xz; Y)),
Rpre,u,2 — I(V, Y|U, XQ),
(19)
and the supremum is taken over all joint distributions

p(z1, x2, u,v) = p(v)p(x2)p(u|z2)p(T1|U; V)

on X7 X Xy x U x V. Note from the form of the joint distri-
butions that u and v are correlated, which differs from the case
of superposition coding. The transmitter selects u as a function
of the known interference v on the transmitter-to-relay channel
H;.

For the Gaussian MIMO relay channel, we employ Gaussian
codebooks for u and v. In particular, we choose u = Gv + x1

and X, = X, + v, where x, and v are chosen to be independent.
Thus, we are employing dirty-paper coding at the transmitter
and the objective is to choose G to maximize I(U;Y1|X2) —
I(U; V| X2). We define 3 - to be the covariance matrix of
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Rp're,u — sSup
p(v)p(z2)p(ulv,z2)p(z1|u,v)

Rsc,u — SUup

p(z2)p(u|z2)p(v)p(z1|u,v)

(min(J(U; Y1|X2) — I{U; V| X2), [(U, X2; Y)) + I(V; YU, X3)),

(min(I(U; Y1|X2), I({U, Xo; Y)) + I(V; YU, X2)).
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21)

(22)

x; given knowledge of x,. By following a procedure similar to
that in [33, APPENDIX C}, we have

I(U; Y1|X2) = I(U; V|X2) = log(det(In, +y1Hi 2, |, H))

(20)

which is analogous to the rate in (10); I(U, X2;Y) and
I(V; Y|U, X5) are the same as in (11) and (12), respectively.

Now assume that the receiver attempts to decode w, before

decoding w,,. Let R, , be the achievable rate for this case. It
1s proved in APPENDIX VI-C that

sup
p(ZBl,:Bg,U,U)

(23)

Rp’re,'v — (Rp're,'v,l + Rpre,v,Q)

where

Rprev,1=min(I(U;Y1|X2) — I(U; V| X2), I(U, X2; Y |V)),
Rp’re,'v,2 - I(Va Y)a
(24)
and the supremum is taken over all joint distributions

p(z1, z2,u,v) = p(x2)p(u, vize)p(z1|u, v)

on Xy X Xo xU x V.

In this case our choice of dirty-paper coding at the trans-
mitter 1n a Gaussian MIMO relay channel results in I(V;Y),
I(U; Y1) X2)— KU;V|Xy), and KU, X2;Y|V) being the same
as in (15), (20), and (16), respectively.

The objective is to choose the decoding order that yields a
higher overall rate. We now state and prove the following result.

Proposition 2: Let R, be the maximum signaling rate for
the Gaussian MIMO relay channel employing dirty-paper cod-
ing at the transmitter. Then

Rp’re, — maX(Rp?"e,ug Rpfr'e,'u) > Rsc

(25)

where R, is given in Proposition 1.

Proof: We show that superposition coding is a special case
of our precoding strategy. Without loss of generality, assume
that w,, 1s decoded first at the receiver. Recall the expression for
Rpyrer, 1n (21). By considering the case where u and v are in-
dependent random variables, we find that p(u|v, z2) = p(u|zs)
and I(U; V|Xs) = 0. Thus, (21) reduces to (22). It immediately
follows that Ry, > Rsc. O

V. NUMERICAL RESULTS

We employ a simple example to demonstrate how transmit-
side message splitting outperforms the bounds in [20, Sec.
III]. We choose Hy = [1 0] and H; = 1. We also choose
H; = [z y|, where x,y € R, and constrain |H;|| = 10. By

considering H; and Hs as two-dimensional vectors, we can de-
fine an “angle” ©(Hy, Hy) between them. We vary ©(H;, Hy)
over the range [0, 7], where ©(H;, Hy) is expressed in radians.
As ©(H;,Hy) — 7/2, the gain between the second transmit
antenna and the relay’s antenna, or y, increases. Note that the
norm constraint on H; causes the gain between the first transmit
antenna and the relay’s antenna, or x, to decrease. .

We consider three system topologies. The first topology is
where the transmitter, the relay, and the receiver are equidis-
tant, and this is modeled by setting v; = v2 = 7y3 in (1). The
second topology is where the relay is closer to the transmitter
than to the receiver, and this is modeled by setting v2 = ~y3 and
v1 = 1073 in (1). The third topology is where the relay is closer
to the receiver than to the transmitter, and this is modeled by set-
ting v1 = 2 and y3 = 10+, in (1). For all three topologies, we
observed that the lower bound from [20, Sec. III] 1s 1 bits/s/Hz
for all values of ©(H;, Hy), which results from our fixing Hy at
[10]. |

We need to solve the optimization problems (8), (13), (18),
and (23) to obtain the achieved rates for our message splitting
strategies. We employ numerical direct search methods such as
the Nelder-Mead algorithm, differential evolution and simulated
annealing to solve (8), (13), (18), and (23).

Fig. 4 shows the rates that are achieved by our message split-
ting strategies along with the upper and lower bounds from [20,
Sec. III] for the first topology. We see that the upper bound de-
creases as ©(H;, Hy) — 7/2 radians. Also, as ©(H;,Hy) —
7/2, the transmitter uses more power on its second transmit
antenna to exploit the rate benefits on the transmitter-to-relay
link. This strategy, though, results in a loss of rate on the direct
link since Hy is fixed at [1 0]. This leads to a monotonic decrease
in the upper bound as ©(H;, Hy) — 7/2.

We sec that the achievable rates via superposition coding
and dirty-paper coding always outperform the lower bound of 1
bits/s/Hz. Also, we see that the achievable rate from dirty-paper
coding is never less than the achievable rate from superposition
coding.

Fig. 5 shows the rates that are achieved by our transmit-side
message splitting strategies along with the upper bound from
[20, Sec. III] for the second topology. As in Fig. 4, we see that
the upper bound and our achievable rates via message sphtting
monotonically decrease as ©(H;, Hy) — /2 radians.

Fig. 6 shows the rates that are achieved by our transmit-side
message splitting strategies along with both the upper and lower
bounds from [20, Sec. III] for the third topology. Here, we see
that the lower bound monotonically increases as ©(H;, Hy) —
7 /2 radians. Also, superposition coding performs comparably
to dirty-paper coding over all angles in this case, whereas for the
other two topologies dirty-paper coding generally significantly
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Comparison of message splitting with Wang et al. for norm(# )=10
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Fig. 4. Achievable rate results for the case where the transmitter, the
relay, and the receiver are all equidistant from each other, or v; = o
=7Y3-

outperformed superposition coding.

V1. CONCLUSION

We derived new lower bounds on capacity for MIMO re-
lay channels via transmit-side message splitting. Our proposed
bounds improve upon the lower bounds that were introduced
in [20]. In particular, our results show the benefits of employing
the relay’s assistance via superposition coding and precoding
at the transmitter. Our results suggest that transmit-side mes-
~sage splitting should be an integral part of communication over
MIMO relay channels, especially when the transmitter-to-relay

link 1s strong relative to the transmitter-to-receiver and/or relay-
to-receiver channels.

APPENDIX-PROOFS OF RATE BOUNDS

A. Establishing (10)
We have I(U; V1| Xs) = h(Y1|X2) — h(Y1| X2, U). Since the

transmitter employs superposition coding, we have

y, = /7Hixi + 24
VyiH (w4 v) + 74

and since u and v are independent given Xo, and v and xo are
independent, we have

(26)

h(Y1|X2) = h(y/7HL(U + V) + Z1| X3)
= log((2me)Nr-

det('}qu (Eu\xz + EU)HJ{ + INT‘))

(27)

and since z; 1s independent of u, v, and X we have

W(Yi|X2,U) = h(yFHL(U + V) + Z:|X5,U)

h(\/’y_lﬂlv —+ Zl‘XQ, U)

= h{(y/yTH1V + Z3)

= log((2me)Nr det(v1Hy S H! + Iy ).
(28)
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Fig. 6. Achievable rate results for the case where the relay is closer to
the receiver than to the transmitter, or v1 = v2 and v3 = 10;.

Now, we note that log((2me)Mt det(2,,,,)) = MU|X2) =
h(U, X3)—h(X3) = log((2me)MeTMr det(A)) —log((2me)Mr.
det(Xy, )) where

A= e 5],
SO
det(A) = det(X,,) det(B,, — E(ux}) 3, ' E(xul))
and

Dws = 2 — E(uxé)Z;jE(xzuT).
LetC = (X, — E(uxg)E;;E(xQuT) + 3,). Thus, we have

h(Y1|Xs) = log((2me) ™ det(vHiCH! +1y.))  (29)
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Table 1. Block Markov encoding and backward decoding.

Block 1 2 B B+1
Voo v™Mwen) o™ (we2) v" (Wo,B) v (¢ )
U un(klaqb) un(kzawu,l) un(kBquaB—l) Un(kB_|_1,’wu,B)
Xo 373 (qb) xg(wu,l) $3’(’wu,B—1) "‘U?Z'L (U)’}L,B)
Y, Wy, 1 Wy, 2 Wy, B ¢

and finally we obtain

det (INT -+ ’YlH1CHJ{)
det (IN,,, 4 fylleUH{)

I(U;Y1|X2) = log (30)

B. Achievability Proof of (18)

This proof relies on the concept of backward decoding, which
was introduced 1n [34].

B.1 Block Markov Encoding and Backward Decoding

Consider B+1 blocks of transmission, each consisting of n
symbols. A sequence of B messages, w; = (Wy 4, Wyi) € W,
1 =1,2,---, B, each selected independently and uniformly over
W is to be sent over the channel in (B + 1) transmissions.

The senders use a triply-indexed set of codewords:

C = {(Un(wv)aun(kaw2u)ax§(w2u)) :
Wy € {(}5, 1729 o '92nRU}a
= {1, 2,0, QR(I(U;Ylle)—(S(e))}’

Way € {Qﬁ, 1727 " .,QnRu}}.

(3D

Wa,, 18 sent cooperatively by both senders in block ¢ to help
the receiver decode the previous message w,, ;—;. To be more
specific, the message wa,, 1s the relay’s estimate of the transmit-
ter’s message w,, in the previous block. See Table 1 for details.

Backward decoding is employed at the receiver to decode
Wy, ; and w,, ;. Thus, after block B+1, y(B + 1) is used to de-
code w, g and w,, g. Then, y(B) and w,, p are used to decode
Wy, B—1 and w, p_1. Next, y(B — 1) and w,, p_1 are used to
decode w, p—2 and w, p—2. The process continues until y(2)
and w, o are used to decode w,,; and wy, ;.

B.2 Generation of Random Code

Fix p(v)p(x2)p(u|z2)p(z1|u,v). Generate at random 27~
iid. v" sequences according to ~ [[i_,p(v;), and index

them as v"(w,), w, € {1,2,---,27%}  Generate at random
2"8u i1.d. 27 sequences according to ~ [];_, p(x2;), and index
them as =% (way, ), woy € {1,2,---,2™%}. For each 2% (w2,),

generate 27U (UsY1lX2)—€) conditionally independent u™ €
Aﬁ”)(u) sequences according to p(u|xz), and partition them
into 2" equal-sized bins for each % (ws, ). This defines the
random codebook C = {(v™(w,), u™(k, way), x5 (wa,,))}. Fi-
nally, if (u™, 0™, 2%) € AE’”’), generate the codeword z7" via
plaf|u™, v™).

The bin partitioning of the u” sequences implicitly defines
a function 7 where F : u™(k,wy,) — w,. Here, k €
(1,2, 20UUYLIX2)=e)) oy - {$,1,2,.-- 2"} and

wy € {¢,1,2,.--,2"%} For example, F(u"(1,wq,)) =
Fu™(2,wey)) = +++ = Fun(2rIUNX2)=Ru=€) 455 }) =
w, = 1. We see that F maps sequences u"(k, wa,) into their
corresponding bin (and hence, message) indices w,,. Since there
is a one-to-one mapping between a sequence u™(k, wa, ) and its
bin w,,, we can also write F(u"(k, wa,,)) as F(k, way).

B.3 Encoding

Let wy; € {1,2,---,2"F«} and w,,; € {1,2,---,2"%}
comprise the new message to be sent in block ¢. Then, select any
u” (k, Wy i—1 ) in bin Wy i such that (CBS’ (’wu,i_l ), u" (k, Way,5—1 ),
V™" (wy ) € A™ if this triplet exists. Use the selected u™ along
with v" (w, ;) to generate 7 via p(z7|u™, v™) and transmit this

Here, P((z7, u™(k, Wy i—1), 0" (W ;)) € AE’“)) >1—e

Assuming that the relay estimated w,, ;1 for w,, ;—1 1n block
i — 1, then the relay sends x5 (,, ;—1) in block %.

B.4 Encoding and Decoding Error Analysis

We first perform an error event analysis for the encoding
stage.

Encoding stage: The transmitter looks for a u"(k, Wy —1)
such that (u™(k, Wy i—1), V™ (Wy4), T5 (Wyi—1)) € A If a
sequence u™(k,w, ;—1) satisfying this criterion can be found,
then the relay declares F(u™(k, wy ;—1)) as Wy, ;. Here, Ey; is
the event where (u”, V™ (wy ;), x5 (Wyi—1)) ¢ A™ wyr such
that F(u") = w,,. Letd = on(I(UsY1]X2)—Ru—€) " and so we
have | |

(1= P((u", 0", Xe (wy,i-1)) € AM))®

—on(I(U;Y1|X2)— Ry —€)g—n(I(U;V[X2)te)

<e (32)
which is arbitrarily small for n sufficiently large if
R, <I(U;Y1|X2) — I(U; V|X2) — 2e. (33)

We note that (32) follows from the following two facts:
i) 2—n(I(U;V|X2)+e) < P((un,vnsz(wu,i_l)) c Agn))’
i) (1—z)f <e ™ for0<z<landk > 1.
Thus, Wy, ; = wy,; With P(Ey;) arbitrarily small if n is suffi-
ciently large and if

R, <I(U;11|X2) — I(U; V| X3). (34)
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Note that for w,, ; and w,, ;, we perform backward decoding at
the receiver, though we perform block-by-block decoding at the
relay. The following analysis is for the case where the receiver
attempts to decode w,, before decoding w,,.

Here, we proceed through three decoding steps. We em-

ploy the concept of weak typicality. Define the following error
events:

e FEy; as the event that (u™(k;,wou,), x5 (Way i), yT (),
y" (1)) ¢ A™ | where y7 (1) and y™ () are the observations
by the relay and receiver, respectively in block 3.

e FE,,; as the event that there is an error in block 7 at decoding
stepm — 1 form = 2, 3, 4.

Thus, the overall probability of error P\™ = P(U* _ Emi)
< Ziq,:o P(E,.;). We first note that for n sufficiently
large, P(E71;) < € by the asymptotic equipartition property
(AEP). Now we bound P(E,,;) form = 2, 3, 4 as follows.

Decoding step 1: Upon observing y7 (i ) the relay receiver
declares that w, ; = 0, is sent if it is the unique index
such that (u™(ki, wy 1), 23 (wy.i—1),y7(0)) € A™ | where
u”(@i,wu,i_l) is in bin 0, ;. Here, Es; is the event that
dw,, 74 Way, 4 such that (u""”(l%%-,wu’i_l),x"é"(wu,i_l),y'{"(z’)) S
A™ | where u“(?;:%-,wu,i_l) 1s in bin w,. Also, let B =

{(un (i, wai-1), y2(1)) € A" (U, Y1|2}), o # wa,i}. Now,
for Wy, # Wy,

P(E3i|w,) = P{(u (Eiawui 1), X2(Wy i-1),
y1 (i) € A™)
=Y o (ki wu,i1), y7 (6) |25 (wu,i-1))
B
= p(u”(ki, wu,i—1) |25 (wa,i1)) -
B
Py ()5 (wy,i-1)) (35)
< ‘ AM(U, Y |23)| 2~ HUIX2)=e)
o—n(H(Y1{X2)—e)

o—n(H(U|X2)+H(Y1|X2)—H(U,Y1|X2)—3€)

— 9 n(H(Y1]|X2)—H(Y1|X2,U)—3¢)
— Z_R(I(U:YI |X2)—'3E)

where (35) follows from the fact that y, (¢) and u(kz, Wy,—1) Are
independent for w,, # w,, ;. Thus, we have

| P(EQz) < anHZ—n(I(U;YﬂXg)—EjE) (36)

and so Wy ; = W, ; with P(Ey;) arbitrarily small if n is suffi-
ciently large and if

R, < I(U; Y1} Xa). (37)

Decoding step 2: Backward decoding is employed to es-
timate w, ; at the receiver. Assume that the receiver has es-
timated w, ;4+; for w, i+1. Now, the receiver looks for a
unique wa,, such that (u™(k;, way), 25 (way), y" (1)) € AE”),
where F(k;,wa,) = Wy iy1. It then declares w, =
this unique we,, exists. Here, Ej3; is the event that Jw, #

wy; such that (u™(ki, @), 23 (W), y"()) € A™, where
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F(k’z,'l‘l}u) — ’lf)u,%'_|_1. LetD = {(un(kz,'&}u),a:"é"(fbu),y”(z)) €
Agn)(U, Xo,Y), Wy # Wy, Fki,Wy) = Wy ir1}. Now, for
ﬁ)u ;é wu,i,

P(Egzlﬁ)u) = P((ll, XQ(TIJ

= Zp(u
_ Zp

A |2
o—n(H(Y)—c)

o—n(H(U,X2)+H(Y)—H(U,X2,Y)—3¢)

u),¥(9) € A™)
1), 2 (82),4" )

(kiy ), T3 (W))p(y"(4)) (38)

l

z—n(I(U,Xz;Y)—Se)

where (38) follows from the fact that y(¢) and (u(k;, Wy,), X2(W.,))
are independent for w,, # w,, ;. Thus, we have

anu z-n(I(U,Xg,Y)—-?)G)

P(E3;) < (39)

and so W, = w,; with P(Es;) arbitrarily small if n is suffi-
ciently large and if

R, < I(U, X2;Y). (40)
Now, we combine (34), (37), and (40) to obtain
R, < min((I(U; 1| X2) — I{(U;V|X32)),I(U, X2;Y)). (41)

Decoding step 3: Backward decoding is also employed to es-
timate w, ; at the receiver. Assume that the receiver has esti-
mated W, ;+1 for w, ;+1. Recall that the receiver has estimated
W, ; for w, ; in decoding step 2. Now, the receiver looks for a
unique w,, such that (u™(k;, Wy ), 25 (Wyi), y"(2), v (wy)) €
AE’”’), where F (k;, Wy, ;) = Wy i+1. It then declares w, = w,
if this unique w, exists. Here, Ey4; is the event that Jw, #
we.: such that (u™(ki, Wu1), #3 (W s ), y™ (i), v" (B,)) € ALY,
where F(k;, Wy i) = Wyit1- Let G = {(v™(dy),y"(3)) €
Agn)(V,Y‘u”,mg),ﬁ}U 7& wv,iaf(k’iaﬁ}u,i) — wu,i—!—l}- NOW«;
for w, # wy i,

P(Ey|wy) = P((u, X2(’¢Buz’) Y(i) V(b)) € A™)
= Z (@) (ki Wa,i), T3 (Wa,i))
g
= Z (W ) |u" (kiy Wa i ), T (W, i)
g
p(y"™ ()|u" (ki Wa,i), T5 (Wa,i)) 42)
< Agn,) (V,YI’U, ,xz) 2—n(H(V|U,Xz)-e) .

9—n(H(Y|U,X2)=e)
2—n(H(V|U,X2)+H(Y|U,Xg)—H(V,YlU,Xg)—Be)

_ 9—n(I(V;Y|U,X;)—3e)

where (42) follows from the fact that y(¢) and v(, ) are inde-
pendent for w0, # w, ;. Thus, we have

2nR1, 2—R(I(V;Y|U,X2)—36)

P(E4) < (43)
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and so w, = w,; with P(Ey;) arbitrarily small if n is suffi-
ciently large and if

R, < I(V;Y|U, X5). (44)

C. Achievability Proof of (23)

This proof also relies on the concept of backward decod-
ing. Apply the code generation and encoding procedures from
APPENDIX B. Note that in this case, backward decoding is
employed at the receiver to decode w, ;, not both w, ; and
wy,;. Thus, after block B+1, y(B + 1) is used to decode
wy, g. Then, y(B) and w,, p are used to decode w,, p—1. Next,
y(B — 1) and w,, p—1 are used to decode w,, g_o. The process
continues until y(2) and w,, o are used to decode w,, 1. The re-
ceiver can use block-by-block decoding to decode w, ;; thus,

wy,; can be decoded in block i after y(i) is received, where
i=1,2,- B.

C.1 Encoding and Decoding Error Analysis

We first perform an error event analysis for the encoding
stage.

Encoding stage: The analysis for this stage is similar to the
analysis for the encoding stage in APPENDIX B. Thus, we have

R, < I(U,Y1|X2) —I(U,V|X2) (45)

Note that for w,, ;, we perform backward decoding at the re-
ceiver, though we still perform block-by-block decoding at the
relay. We also perform block-by-block decoding at the receiver
for w,, ;.

‘Once again, we proceed through three decoding steps and em-
ploy the concept of weak typicality. Define the following error
events:

e Fj; astheeventthat (u”(k;, woy ), 25 (Way i), ¥7 (1), y™ (7))
¢ A, where y?(i) and y™(7) are the observations by the
relay and receiver, respectively in block .

e [F,; as the event that there is an error in block ¢ at decoding
stepm — 1Lform = 2, 3, 4.

Thus, the overall probability of error Pe(n) = P(Ui,l,;1 E.i)

< Zf;:l P(E,,;). We first note that for n sufficiently

large, P(E1;) < € by the asymptotic equipartition property
(AEP). Now we bound P(FE,,;) form = 2, 3, 4 as follows.

Decoding step 1: Upon observing y" (i), the receiver de-
clares that w, ; = w, 18 sent if it is the unique index such that
(V™ (Wy ), y" (7)) € AL™ . Here, E; is the event that 3, # Wy 4
such that (v™ (w0, ), y™(¢)) € A LetH = {(v™(wy),y™ (7)) €
Agn)(V, Y), Wy # wy,; b Now, for 0, # w, 4,

(46)

IA

Ay y)\ o—n(H(V)—€)g—n(H(Y)—¢)

2-—n(H(V)+H(Y)—H(V,Y)—3e)

IA

2—n(I(V;Y)—3e)
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where (46) follows from the fact that y(¢) and v(w, ) are inde-
pendent for w,, # w, ;. Thus, we have

P(E‘z@) < 2nR02—n(I(V;Y)—-3E) (47)

and SO W, ; = wy,; With P(Ey;) arbitrarily small if n is suffi-
ciently large and if
R, < I(V};Y).

Decoding step 2: The analysis for this step is similar to the
analysis for decoding step 1 in APPENDIX B. Thus, we have

(48)

R, < I(U: Y3 X2). (49)

Decoding step 3: Backward decoding is employed to esti-
mate w,, ; at the receiver. Assume that the receiver has estimated
Wy ;11 for wy ;41. Recall that the receiver has estimated w, ;
for w, ; in decoding step 1. Now, the receiver looks for a unique
wao,, Such that (’U,n (k‘z, ’bUQu), .’,Eg’ (’wgu), y”(z), " (/va’i)) & A.(gn),
where F(k;, wg,) = Wy,+1. It then declares w, = wg, 1f
this unique wo,, exists. Here, E; is the event that 3w, # w,
such that (u™(k;, W), 5 (W), y™ (%), V™" (Wy,4)) € A™ | where
F(kza(lﬁu) — "I)u,'i—i—l- Let K = {(un(k'&aﬁ)u)axrg(@u)ayn(z)) S
AU, Xo, YIom), y # Wy, Flkiy W) = Wuir1). Now,
for ’L?Ju 7é Why, 15

P(E4?l|ﬁ)u) — P((uax2(ﬁ)u)aY(i)av("z)v,i)) S Agn))
> p(u(ki, B ), 25 (W), y™ (1) [ (o))

K

= 5 p(un ki, ), @ (i) 0" (0,0))

X
p(y" () |v™ (W)
AP (U, Xy, Y]o™)| 2 mHUXaV) =)

o-n(H(Y[V)~¢)

(50)

< 9= n(HUX:|V)+H(Y|V)-H(U,X2,Y|V)—3¢)
2—n(I(U,Xg;Y|V)—3(-:)

where (50) follows from the fact that y(7) and (u(k;, @y, ), X2(w,,))
are independent for w,, # w,, ;. Thus, we have

P(E&lz) S QnRuz—n(I(U,Xg;Y|V)—3€) (51)
and so W, = w,; with P(FEy;) arbitrarily small if n is suffi-
ciently large and if

R, < I{U, X2: Y V). (52)

Now, we combine (45), (49), and (52) to obtain

(53)
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