• Title/Summary/Keyword: MIMO WLAN

Search Result 43, Processing Time 0.057 seconds

Full-Duplex Massive MIMO for High Efficiency Next Generation WLAN Systems (고효율 차세대 무선랜 시스템을 위한 전이중 거대 다중입출력)

  • Lee, Jinnyeong;Choi, Kyung Jun;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.921-923
    • /
    • 2016
  • In this letter, massive MIMO and full-duplex communication are considered together for high efficiency next generation WLAN systems. The proposed scheme allocates different carrier sensing thresholds by applying the joint spatial division and reuse (JSDR) scheme and is able to enhance the efficiency of MU-MIMO protocols by reducing the protocol overhead. Finally, full-duplex communication is applied to improve the spectral efficiency of WLAN systems.

A New Preamble Structure for a MIMO OFDM-based WLAN System (MIMO OFDM 기반 무선랜 시스템에서의 새로운 프리앰블 구조)

  • Kim Ji hyung;Hong Dae sik;Kang Chang eon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1375-1379
    • /
    • 2004
  • In this paper, we propose a new preamble structure for channel estimation in a MIMO OFDM-based WLAN System. Moreover, both the backward compatibility with IEEE 802.11a system and low overhead are considered for the preamble design. Simulation results show that the proposed preamble has low overhead and is obtained the good performance gain for channel estimation.

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.

Performance Analysis of IEEE 802.11n System adapting Frame Aggregation Methods (Frame Aggregation 기법을 적용한 IEEE 802.11n 시스템 성능 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.515-527
    • /
    • 2009
  • IEEE 802.11n is an ongoing next-generation WLAN(Wireless Local Area Network) standard that supports a very high-speed connection with more than 100Mb/s data throughput measured at the MAC(Medium Access Control) layer. Study trends of IEEE 802.11n show two aspects, enhanced data throughput using aggregation among packets in MAC layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, the former doesn't consider wireless channel and the latter doesn't consider aggregation among packets for reality. Therefore, this paper analyzes data throughput for IEEE 802.11n considering MAC and PHY connection. A-MPDU(Aggregation-MAC Protocol Data Unit) and A-MSDU(Aggregation-MAC Service Unit) is adapted considering multi-service in MAC layer, WLAN MIMO TGn channel using SVD(Singular Value Decomposition) is adapted considering MIMO and wireless channel in PHY layer. Consequently, Simulation results shows throughput between A-MPDU and A-MSDU. Also, We use Ns-2(Network simulator-2) for reality.

Design of Dual-Band MIMO Antenna with High Isolation for WLAN Mobile Terminal

  • Lee, Jung-Nam;Lee, Kwang-Chun;Park, Nam-Hoon;Park, Jong-Kweon
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.177-187
    • /
    • 2013
  • In this paper, we propose a dual-band multiple-input multiple-output (MIMO) antenna with high isolation for WLAN applications (2.45 GHz and 5.2 GHz). The proposed antenna is composed of a mobile communication terminal board, eight radiators, a coaxial feed line, and slots for isolation. The measured -10 dB impedance bandwidths are 10.1% (2.35 GHz to 2.6 GHz) and 3.85% (5.1 GHz to 5.3 GHz) at each frequency band. The proposed four-element MIMO antenna has an isolation of better than 35 dB at 2.45 GHz and 45 dB at 5.2 GHz between each element. The antenna gain is 3.2 dBi at 2.45 GHz and 4.2 dBi at 5.2 GHz.

Analysis of IEEE 802.11n System adapting SVD-MIMO Method based on Ns(Network simulator)-2 (Ns-2 기반의 SVD-MIMO 방식을 적용한 IEEE 802.11n 시스템 분석)

  • Lee, Yun-Ho;Kim, Joo-Seok;Choi, Jin-Kyu;Kim, Kyung-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1109-1119
    • /
    • 2009
  • WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Though existing IEEE 802.11e demonstrates that data rates exceed 54Mbps with assuring QoS(Quality of Service), wireless internet users can't be satisfied with real communication system. After IEEE 802.11e system, Study trends of IEEE 802.11n show two aspects, enhanced system throughput using aggregation among packets in MAC (Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PHY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PHY connection. Therefore, this paper adapts MIMO in PHY layer for IEEE 802.11n system based on A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer considering MAC and PHY connection. SVD(Singular Value Decomposition) method with WLAN MIMO TGn Channel is used to analyze MIMO. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use Ns-2(Network Simulator-2) considering MAC and PHY connection for reality.

  • PDF

Design of Low-Complexity MIMO-OFDM Symbol Detector for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저복잡도 MIMO-OFDM 심볼 검출기 설계)

  • Im, Jun-Ha;Kim, Jae-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.447-448
    • /
    • 2008
  • This paper presents a low-complexity design and implementation results of a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) symbol detector for high speed wireless LAN (WLAN) systems. The proposed spatial division multiplexing (SDM) symbol detector is designed by HDL and synthesized to gate-level circuits using 0.18um CMOS library. The total gate count for the symbol detector is 238K.

  • PDF

Real-Time Frequency Interference Analysis System for Performance Degradation Analysis of MIMO-OFDM WLAN Due to WPAN Interferer (WPAN 간섭원에 의한 MIMO-OFDM WLAN의 성능 열화 분석을 위한 실시간 주파수 간섭 분석 시스템)

  • Yoon, Hyungoo;Park, Jin-Soo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.88-91
    • /
    • 2016
  • In this paper, we have proposed the frequency interference analysis system using both LabVIEW and Universal Software Radio Peripheral(USRP) for performance degradation analysis of Multi Input Multi Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM) Wireless Local Area Network(WLAN) due to Wireless Local Area Network(WPAN) interferer. The proposed system consists of three part, i.e., victim, channel, and interferer. Both victim and interferer are implemented by LaBVIEW and a USRP board. Then interfering signal and additive white Gaussian noise are combined with the wanted signals of a victim. Measured Bit Error Rate(BER) at the victim receiver is compared with theoretical BER according to various signal to interference plus noise power ratio (SINR) values. Measured and theoretical BER curves show good agreement.

Small-Size and High-Isolation MIMO Antenna for WLAN

  • Jin, Zhe-Jun;Lim, Jong-Hyuk;Yun, Tae-Yeoul
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.114-117
    • /
    • 2012
  • A small-sized ($15mm{\times}30mm$) planar monopole MIMO antenna that offers high-isolation performance is presented in this letter. The antenna is miniaturized using inductive coupling within a meander-line radiator and capacitive coupling between a radiator and an isolator. High isolation is achieved by a T-shaped stub attached to the ground plane between two radiators, which also contributes to the small size using a folded structure and the capacitive coupling with radiators. The proposed antenna operates for the WLAN band within 2.4 GHz to 2.483 GHz. The measured isolation (S21) is about -30 dB, and the envelope correlation coefficient is less than 0.1.