• Title/Summary/Keyword: MIMO Radar

Search Result 34, Processing Time 0.027 seconds

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah;Bizaki, Hossein Khaleghi;Joshaghani, Mohsen Fallah
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.640-649
    • /
    • 2021
  • In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

Orthogonal Waveform Space Projection Method for Adaptive Jammer Suppression

  • Lee, Kang-In;Yoon, Hojun;Kim, Jongmann;Chung, Young-Seek
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.868-874
    • /
    • 2018
  • In this paper, we propose a new jammer suppression algorithm that uses orthogonal waveform space projection (OWSP) processing for a multiple input multiple output (MIMO) radar system exposed to a jamming signal. Generally, a conventional suppression algorithm based on adaptive beamforming (ABF) needs a covariance matrix composed of the jammer and noise only. By exploiting the orthogonality of the transmitting waveforms of MIMO, we can construct a transmitting waveform space (TWS). Then, using the OWSP processing, we can build a space orthogonal to the TWS that contains no SOI. By excluding the SOI from the received signal, even in the case that contains the SOI and jamming signal, the proposed algorithm makes it possible to evaluate the covariance matrix for ABF. We applied the proposed OWSP processing to suppressing the jamming signal in bistatic MIMO radar. We verified the performance of the proposed algorithm by comparing the SINR loss to that of the ideal covariance matrix composed of the jammer and noise only. We also derived the computational complexity of the proposed algorithm and compared the estimation of the DOD and DOA using the SOI with those using the generalized likelihood ratio test (GLRT) algorithm.

Polar-Format-Processing-Based Moving Target Imaging in MIMO Radar Environment (MIMO 레이다 환경에서 Polar Format Processing 기반 이동표적 이미징)

  • Choi, Sang-Hyun;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.124-131
    • /
    • 2019
  • This study presents an imaging algorithm that can provide an image of a moving target in a multiple-input-multiple-output radar environment where multiple transmitting and receiving radars are fixed on the ground. The proposed algorithm, which is based on polar format processing using plane wave approximation, is shown to provide an unaliased image by using multiple transmitting radars even when the distances between the receiving radars are relatively large. We derive the conditions necessary to deploy the transmitting radars by which the resolution of the reconstructed image can be improved, while simultaneously reducing aliasing artifacts. Moreover, we offer a means of separating out each transmitting radar target echo. Finally, the performance of the proposed system is verified through a simulation.

OFDM MIMO radar waveform design for targets identification

  • Bai, Ting;Zheng, Nae;Chen, Song
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.592-603
    • /
    • 2018
  • In order to obtain better target identification performance, an efficient waveform design method with high range resolution and low sidelobe level for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar is proposed in this paper. First, the wideband CP-based OFDM signal is transmitted on each antenna to guarantee large bandwidth and high range resolution. Next, a complex orthogonal design (COD) is utilized to achieve code domain orthogonality among antennas, so that the spatial diversity can be obtained in MIMO radar, and only the range sidelobe on the first antenna needs suppressing. Furthermore, sidelobe suppression is expressed as an optimization problem. The integrated sidelobe level (ISL) is adopted to construct the objective function, which is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The numerical results demonstrate the superiority in performance (high resolution, strict orthogonality, and low sidelobe level) of the proposed method compared to existing algorithms.

A Study on Optimum Performance in MIMO RADAR with Transmit and Receive Antenna Allocation (MIMO 레이더에서 송수신 안테나 분배에 의한 최적 성능에 관한 연구)

  • NamGoong, Geol;Lim, Jong-Tae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.204-210
    • /
    • 2012
  • In this paper, we study the method of estimating direction of departure(DOD) and direction of arrival(DOA) using estimation of signal parameters via rotational invariant techniques (ESPRIT) in uniform linear array MIMO radar system. While it is possible to improve the resolution by increasing the numbers of physical antennas and snapshots after matched filtering, such methods generally give rise to increase in complexity. In this paper, we propose to improve the resolution by optimally allocating the number of transmit and receive antennas. In particular, we show that the performance is optimized when the number of the receive antennas is approximately twice that of transmit antennas.

Maximum Power Waveform Design for Bistatic MIMO Radar System

  • Shin, Hyuksoo;Yeo, Kwang-Goo;Yang, Hoongee;Chung, Youngseek;Kim, Jongman;Chung, Wonzoo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.167-172
    • /
    • 2014
  • In this paper we propose a waveform design algorithm that localizes the maximum output power in the target direction. We extend existing monostatic radar optimal waveform design schemes to bistatic multiple-input multiple-output (MIMO) radar systems. The algorithm simultaneously calculates the direction of departure (DoD) and the direction of arrival (DoA) using a two-dimensional multiple signal classification (MUSIC) method, and successfully localizes the maximum transmitted power to the target locations by exploiting the calculated DoD. The simulation results confirm the performance of the proposed algorithm.

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

Fast-convergence trilinear decomposition algorithm for angle and range estimation in FDA-MIMO radar

  • Wang, Cheng;Zheng, Wang;Li, Jianfeng;Gong, Pan;Li, Zheng
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.120-132
    • /
    • 2021
  • A frequency diverse array (FDA) multiple-input multiple-output (MIMO) radar employs a small frequency increment across transmit elements to produce an angle-range-dependent beampattern for target angle and range detection. The joint angle and range estimation problem is a trilinear model. The traditional trilinear alternating least square (TALS) algorithm involves high computational load due to excessive iterations. We propose a fast-convergence trilinear decomposition (FC-TD) algorithm to jointly estimate FDA-MIMO radar target angle and range. We first use a propagator method to obtain coarse angle and range estimates in the data domain. Next, the coarse estimates are used as initialized parameters instead of the traditional TALS algorithm random initialization to reduce iterations and accelerate convergence. Finally, fine angle and range estimates are derived and automatically paired. Compared to the traditional TALS algorithm, the proposed FC-TD algorithm has lower computational complexity with no estimation performance degradation. Moreover, Cramer-Rao bounds are presented and simulation results are provided to validate the proposed FC-TD algorithm effectiveness.

Closed-Form Expression of Approximate ML DOA Estimates in Bistatic MIMO Radar System (바이스태틱 MIMO 레이다 시스템에 적용되는 ML 도래각 추정 알고리즘의 근사 추정치에 대한 Closed-Form 표현)

  • Paik, Ji Woong;Kim, Jong-Mann;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.886-893
    • /
    • 2017
  • Recently, for detection of low-RCS targets, bistatic radar and multistatic radar have been widely employed. In this paper, we present the process of deriving the received signal modeling of the bistatic MIMO radar system and deals with the performance analysis of applying the bistatic signal to the ML arrival angle estimation algorithm. In case of the ML algorithm, as the number of the targets increases, azimuth search dimension for DOA estimation also increases, which implies that the ML algorithm for multiple targets is computationally very intensive. To solve this problem a closed-form expression of estimation error is presented for performance analysis of the algorithm.

Iterative Target Localization Method for Distributed MIMO Radar System (반복적 연산을 이용하는 Distributed MIMO 레이다 시스템의 위치 추정 기법)

  • Shin, Hyuksoo;Chung, Young-Seek;Yang, Hoon-Gee;Kim, Jong-mann;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.819-824
    • /
    • 2017
  • This paper presents a target localization scheme for distributed Multi-input Multi-output(MIMO) radar system using ToA measurements obtained from multiple transmitter and receiver pairs. The proposed method can locate the target from an arbitrary initial point by iteratively finding the Taylor linear approximation equation. The simulation results show that proposed method achieves the better mean square error(MSE) performance than the existing target localization methods, and furthermore, attains Cramer-Rao Lower Bound(CRLB).