• Title/Summary/Keyword: MIMO(Multi-Input-Multi-Output)

Search Result 366, Processing Time 0.026 seconds

Performance Analysis for Spatial Multiplexing MIMO in MB-OFDM UWB Receivers (MB-OFDM UWB 시스템에서 공간 다중화 MIMO 수신기의 성능 분석)

  • Suh, Jung-Won;Kwon, Yang-Soo;Kim, Seok-Hyeon;Chung, Jea-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.121-129
    • /
    • 2008
  • This paper presents the spatial multiplexing MIMO system to increase data rate to double in MB-OFDM UWB system, which is ECMA standards, and compares BER performance of various receiver structures. The complexity and BER performance of various types of spatial multiplexing receivers are compared and analyzed using diagonal and horizontal encoding techniques for $2{\times}2$\;and\;2{\times}3$ antennas systems. Computer simulations exhibit that $2{\times}2$ MML and $2{\times}3$ ZF method show better BER performance than that of SISO system with simple complexity.

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Adaptive and Digital Autopilot Design for Nonlinear Ship-to-Ship Missiles (비선형 함대함 미사일의 적응 디지털 제어기 설계)

  • Im, Ki-Hong;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.619-621
    • /
    • 2005
  • This paper proposes apractical design method for ship-to-ship missiles' autopilot. When the pre-designed analogue autopilot is implemented in digital way, theygenerally suffer from severe performance degradation and instability problem even for a sufficiently small sampling time. Also, aerodynamic uncertainties can affect the overall stability and this happens more severely when the nonlinear autopilot is digitally implemented. In order to realize a practical autopilot, two main issues, digital implementation problem and compensation for the aerodynamic uncertainties, are considered in this paper. MIMO (multi-input multi-output) nonlinear autopilot is presented first and the input and output of the missile are discretized for implementation. In this step, the discretization effect is compensated by designing an additional control input. Finally, we design a parameter adaptation law to compensate the control performance. Stability analysis and 6-DOF (degree-of-freedom) simulations are presented to verify the proposed adaptive autopilot.

  • PDF

An Implementation of Inverse Filter Using SVD for Multi-channel Sound Reproduction (SVD를 이용한 다중 채널상에서의 음재생을 위한 역변환 필터의 구현)

  • 이상권;노경래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.3-11
    • /
    • 2001
  • This paper describes an implementation of inverse filter using SVD in order to recover the input in multi-channel system. The matrix formulation in SISO system is extended to MIMO system. In time and frequency domain we investigates the inversion of minimum phase system and non-minimum phase system. To execute an effective inversion of non-minimum phase system, SVD is introduced. First of all we computes singular values of system matrix and then investigates the phase property of system. In case of overall system is non-minimum phase, system matrix has one (or more) very small singular value (s). The very small singular value (s) carries information about phase properties of system. Using this property, approximate inverse filter of overall system is founded. The numerical simulation shows potentials in use of the inverse filter.

  • PDF

Performance Evaluation of Inter-Sector Collaborative PF Schedulers for Multi-User MIMO Transmission Using Zero Forcing (영점 강제 다중 사용자 MIMO 전송 시 셀 간 정보 교환을 활용한 협력적 PF 스케줄러의 성능 평가)

  • Lee, Ji-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • Multi-user MIMO (Multiple-Input Multiple-Output) systems require collaborative PF schedulers to improve the performance of the log sum of average transmission rates. While the performance of single cell based conventional PF schedulers has been evaluated over various channel conditions, scheduling algorithms by multiple base stations which select multiple users over a given time frame and their performance require further investigations. In this paper, we apply a collaborative PF scheduler to the distributed multi-user MIMO system, which assigns radio resources to multiple users by exchanging user channel information from base stations located in three adjacent sectors. We further evaluate its performance in terms of the log sum of average transmission rates. The performance is compared to that of the full-search collaborative PF scheduler which searches over all possible combinations of user groups, and that of a parallel PF scheduler that determines users without channel information exchange among base stations. We show the log sum of average transmission rates of the collaborative PF scheduler outperforms that of the parallel PF scheduler in low percentile region. In addition, the collaborative PF scheduler exhibits a negligible performance degradation when compared to the full-search collaborative PF scheduler while a significant reduction of the computational complexity is achievable at the same time.

Dynamic performance of reduced order model of multivariable controller for generating turbine (발전터빈 용 다변수 제어기의 축약모델 동특성)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1176-1178
    • /
    • 1998
  • This paper presents a model reduction procedure of the high order MIMO (multi input multi output) controller designed for the steam turbine in the generating plant. The application limit to reduction of the order is reviewed by variation in Hankel singular value as well as by variation in singular value Bode diagrams of transfer function matrices. Dynamic performances in the time domain are also compared for each reduced order model.

  • PDF

Design and Implementation of a Low-Complexity and High-Throughput MIMO Symbol Detector Supporting up to 256 QAM (256 QAM까지 지원 가능한 저 복잡도 고 성능의 MIMO 심볼 검파기의 설계 및 구현)

  • Lee, Gwang-Ho;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.34-42
    • /
    • 2014
  • This paper presents a low-complexity and high-throughput symbol detector for two-spatial-stream multiple-input multiple-output systems based on the modified maximum-likelihood symbol detection algorithm. In the proposed symbol detector, the cost function is calculated incrementally employing a multi-cycle architecture so as to eliminate the complex multiplications for each symbol, and the slicing operations are performed hierarchically according to the range of constellation points by a pipelined architecture. The proposed architecture exhibits low hardware complexity while supporting complicated modulations such as 256 QAM. In addition, various modulations and antenna configurations are supported flexibly by reconfiguring the pipeline for the slicing operation. The proposed symbol detector is implemented with 38.7K logic gates in a $0.11-{\mu}m$ CMOS process and its throughput is 166 Mbps for $2{\times}$3 16-QAM and 80Mbps for $2{\times}3$ 64-QAM where the operating frequency is 478 MHz.

MIMO Receiver Using RBF Network Over Rich-Scattering fading channels (Rich-Scattering 페이딩 채널에서 RBF Network를 이용한 MIMO 수신기)

  • 고균병;강창언;홍대식
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.8
    • /
    • pp.301-306
    • /
    • 2003
  • This paper proposes a novel detection scheme using a radial basis function (RBF) network in a multi-input multi-output (MIMO) environment. In order to evaluate the performance of the proposed MIMO-RBF receiver, simulations are performed over the rich-scattering fading channel. Simulation results confirm that the proposed scheme shows the similar bit-error rate (BER) performance of a maximum likelihood detection (MLD) and outperforms Vertical-Bell Laboratories Layered Space-Time using minimum-mean-square-error nulling (VBLAST-MMSE) as well as VBLAST using zero-forcing nulling (VBLAST-ZF). Moreover, we investigate the effect on the performance of the number of RBF center with two modulation formats (BPSK and QPSK) and different number of transmit and receive antennas. The performance of the proposed detector is verified with respect to an initialization-rate of RBF centers.

Low-Complexity Massive MIMO Detectors Based on Richardson Method

  • Kang, Byunggi;Yoon, Ji-Hwan;Park, Jongsun
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.326-335
    • /
    • 2017
  • In the uplink transmission of massive (or large-scale) multi-input multi-output (MIMO) systems, large dimensional signal detection and its hardware design are challenging issues owing to the high computational complexity. In this paper, we propose low-complexity hardware architectures of Richardson iterative method-based massive MIMO detectors. We present two types of massive MIMO detectors, directly mapped (type1) and reformulated (type2) Richardson iterative methods. In the proposed Richardson method (type2), the matrix-by-matrix multiplications are reformulated to matrix-vector multiplications, thus reducing the computational complexity from $O(U^2)$ to O(U). Both massive MIMO detectors are implemented using a 65 nm CMOS process and compared in terms of detection performance under different channel conditions (high-mobility and flat fading channels). The hardware implementation results confirm that the proposed type1 Richardson method-based detector demonstrates up to 50% power savings over the proposed type2 detector under a flat fading channel. The type2 detector indicates a 37% power savings compared to the type1 under a high-mobility channel.

An Extendable Fixed-Complexity Sphere Decoder for Downlink Multi-User MIMO Communication System (하향링크 다중 사용자 MIMO 통신 시스템을 위한 확장형 고정복잡도 스피어 복호기)

  • Koo, Jihun;Kim, Yongsuk;Kim, Jaeseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.4
    • /
    • pp.180-187
    • /
    • 2014
  • In this paper, a extension of a fixed-complexity sphere decoder (FSD) to perform interference signal detection and cancelling is proposed for downlink multiuser multiple input-multiple output (MIMO) communication system. It is based on the application of channel matrix expansion on generalized sphere decoder (GSD), and modification of the channel matrix ordering scheme to a FSD algorithm for interference detection. A Monte Carlo simulation shows that the proposed algorithm improves the receiver performance by 3 dB as compared to maximum likelihood detection without interference cancelling at 10% packet error rate in configuration of 702 Mbit/s datarate for four users respectively on IEEE802.11ac.