• Title/Summary/Keyword: MIM waveguide

Search Result 10, Processing Time 0.018 seconds

Independent Color Filtering of Differently Polarized Light Using Metal-Insulator-Metal Type Guided Mode Resonance Structure

  • Jung, Young Jin;Park, Namkyoo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.180-187
    • /
    • 2016
  • The independent operation of a color filter for incident polarization is demonstrated using a guided-mode resonance (GMR) filter employing a metal-insulator-metal (MIM) waveguide. To achieve independent operation, a rectangular MIM grating is proposed as a wave-guide resonator. The design considerations are discussed and include how to determine the grating period and slit width. Power flow distribution is observed with slit width variation. Blue-green, green-red, and blue-red filters for corresponding x- and y-polarizations are demonstrated as application examples with numerical simulation with rectangle-shaped MIM grating. As a practical application, feasibility as a chromatic polarizer is discussed.

Analysis of a Triangular-shaped Plasmonic Metal-Insulator-Metal Bragg Grating Waveguide

  • Jafarian, Behnaz;Nozhat, Najmeh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.118-123
    • /
    • 2011
  • A novel triangular-shaped plasmonic metal-insulator-metal (MIM) Bragg grating waveguide is introduced, whose band-gap is narrower than that of the conventional step type and wider than that of the sawtoothshaped one. Moreover apodized triangular-shaped MIM Bragg grating structures are proposed in order to reduce the side lobes of the transmission spectrum, because the Bragg reflector with a sawtooth profile has a smoother transmission spectrum than that of a triangular-shaped one. The performance of the proposed structures is simulated by using the finite difference time domain method.

Improvement of the Radiation Efficiency for a CPW(Co-Planar Waveguide)-Fed ZOR(Zeroth-Order Resonant) Antenna (Co-Planar Waveguide(CPW) 급전 영차 공진 안테나의 방사효율 개선)

  • Cho, Tae-Joon;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.59-66
    • /
    • 2011
  • In this paper, a co-planar waveguide(CPW)-fed zeroth-order resonant(ZOR) antenna with an improved radiation efficiency was built and tested. The unit cell of the proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and a shorted shunt stub inductor. In order to reduce the antenna size and to achieve the high radiation efficiency two shorted shunt stub arms bent by 90 degree were connected to the ground plane through the via. The proposed antenna consisting of two unit cells has an open ended composite right/left-handed(CRLH) transmission line structure. As a result the dominantly radiating parts of the antenna comes from shunt stub arms and vertical vias. The total size of the fabricated zeroth-order resonant antenna is $0.22\;{\lambda}_0{\times}0.22\;{\lambda}_0$. The measured gain and efficiency of the fabricated antenna have been enhanced by 3.07 dBi and 75 %, respectively, at the zeroth-order resonant frequency of 2.97 GHz.

Numerical Investigation of Tunable Band-pass\band-stop Plasmonic Filters with Hollow-core Circular Ring Resonator

  • Setayesh, Amir;Mirnaziry, Sayyed Reza;Abrishamian, Mohammad Sadegh
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.82-89
    • /
    • 2011
  • In this paper, we numerically study both band-pass and band-stop plasmonic filters based on Metal-Insulator-Metal (MIM) waveguides and circular ring resonators. The band-pass filter consists of two MIM waveguides coupled to each other by a circular ring resonator. The band-stop filter is made up of an MIM waveguide coupled laterally to a circular ring resonator. The propagating modes of Surface Plasmon Polaritons (SPPs) are studied in these structures. By substituting a portion of the ring core with air, while the outer dimensions of the ring resonator are kept constant, we illustrate the possibility of red-shift in resonant wavelengths in order to tune the resonance modes of the proposed filters. This feature is useful for integrated circuits in which we have limitations on the outer dimensions of the filter structure and it is not possible to enlarge the dimension of the ring resonator to reach to longer resonant wavelengths. The results are obtained by a 2D finite-difference time-domain (FDTD) method. The introduced structures have potential applications in plasmonic integrated circuits and can be simply fabricated.

Composite Right/Left Handed(CRLH) Transmission Line with Controllable Transmission Zeros (제어 가능한 전송 영점을 갖는 CRLH 전송 선로)

  • Lee, Ja-Hyeon;Kim, Kyoung-Keun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.583-590
    • /
    • 2010
  • In this paper, a novel CRLH-TL unit cell with controllable transmission zeros was proposed. Proposed composite right/left handed transmission line(CRLH-TL) unit cell is implemented in the form of the metal-insulator-metal(MIM) capacitors, the microstrip stub inductors, and the co-planar waveguide(CPW) inductor. And this proposed CRLH-TL generates two transmission zeros in lower/upper passband by the effort of electromagnetic couplings between each MIM capacitors and microstrip stub inductors. Using this proposed CRLH-TL, broad bandpass filter for UWB system was designed and fabricated. The measured results reveal that the two transmission zeros are observed in lower/upper passband and the overall size of the filter, excluding the feed line is about 8 mm$\times$8 mm, less then $\lambda_g$/4 on electric size.

Transmission Characteristics of Periodic Au Slits at Terahertz Regimes (테라헤르츠 영역에서 금으로 구성된 주기적인 소형 개구의 투과 현상)

  • Yoo, Sungjun;Park, Jong-Eon;Lee, Jun-yong;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.77-82
    • /
    • 2018
  • Electromagnetic wave transmission through periodic metal-insulator-metal(MIM) waveguides as a function of plate thickness has not been extensively studied at various terahertz frequencies. In this paper, we investigate the transmittances through gold MIM slits when a normally incident wave with parallel polarization is considered at several terahertz frequencies. In addition, the results are compared to the case of a perfect electric conductor, and the differences are discussed.

Zeroth-Order Resonant Antenna with Frequency Reconfigurable Radiating Structures (주파수 재구성 가능한 방사 구조를 갖는 영차 공진 안테나)

  • Lee, Hongmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.12-20
    • /
    • 2013
  • In this paper, a co-planar waveguide(CPW) fed zeroth-order resonant(ZOR) antenna with frequency reconfigurable radiating structures is fabricated and measured. The unit cell of proposed antenna consists of a series metal-insulator-metal(MIM) capacitor and two shunt line inductors which are shorted through the via. The proposed antenna is designed based on a composite right/left-handed(CRLH) transmission line with two unit cells and it has open ended structure in order to radiate electromagnetic energy mainly on the shunt arm. In order to reduce the antenna size and to exhibit a frequency reconfigurable ability using diode switches four straight strips bent by 90 degrees are used as shunt inductors. The total size of fabricated antenna is $0.22{\lambda}_0{\times}0.16{\lambda}_0$ at zeroth-order resonant(ZOR) frequency. The measured maximum gain and bandwidth (VSWR ${\leq}2$) are 3.1 dBi and 56MHz at ZOR frequency of 2.97 GHz, respectively. This type of antenna can be applied to a frequency reconfigurable antenna system with triple bands.

Improved Plasmonic Filter, Ultra-Compact Demultiplexer, and Splitter

  • Rahimzadegan, Aso;Granpayeh, Nosrat;Hosseini, Seyyed Poorya
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.261-273
    • /
    • 2014
  • In this paper, metal insulator metal (MIM) plasmonic slot cavity narrow band-pass filters (NBPFs) are studied. The metal and dielectric of the structures are silver (Ag) and air, respectively. To improve the quality factor and attenuation range, two novel NBPFs based on tapered structures and double cavity systems are proposed and numerically analyzed by using the two-dimensional (2-D) finite difference time domain (FDTD) method. The impact of different parameters on the transmission spectrum is scrutinized. We have shown that increasing the cavities' lengths increases the resonance wavelength in a linear relationship, and also increases the quality factor, and simultaneously the attenuation of the wave transmitted through the cavities. Furthermore, increasing the slope of tapers of the input and output waveguides decreases attenuation of the wave transmitted through the waveguide, but simultaneously decreases the quality factor, hence there should be a trade-off between loss and quality factor. However, the idea of adding tapers to the waveguides' discontinuities of the simple structure helps us to improve the device total performance, such as quality factor for the single cavity and attenuation range for the double cavity. According to the proposed NBPFs, two, three, and four-port power splitters functioning at 1320 nm and novel ultra-compact two-wavelength and triple-wavelength demultiplexers in the range of 1300-1550 nm are proposed and the impacts of different parameters on their performances are numerically investigated. The idea of using tapered waveguides at the structure discontinuities facilitates the design of ultra-compact demultiplexers and splitters.

Design of Miniaturized Directional Coupler Utilizing Lumped Element (집중소자를 이용한 소형화된 방향성 결합기 설계)

  • Yong, Kwang-Seong;Yook, Jong-Gwan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.251-255
    • /
    • 2003
  • In this paper, a miniaturized directional coupler utilizing lumped element is proposed as a interdigital capacitor. The traditional miniaturization technique of transmission line realized a utilizing MIM(Metal-Insulator-Metal) capacitor on CPW(Coplanar Waveguide). However, we present a simplified design procedure without additional manufacturing process utilizing interdigital capacitor on microstrip with ease of design. The similar characteristics between the conventional directional coupler with ${\lambda}/4$ transmission line and the miniaturized directional coupler with ${\lambda}/8$ transmission line are validated through simulation and measurement results. Miniaturization rate of total size is about 25% while coupled line is about 60%. As a result, this proposed directional coupler can reduce the size of mobile communication system at 2 GHz.

  • PDF

Active Focusing of Light in Plasmonic Lens via Kerr Effect

  • Nasari, Hadiseh;Abrishamian, Mohammad Sadegh
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2012
  • We numerically demonstrate the performance of a plasmonic lens composed of an array of nanoslits perforated on thin metallic film with slanted cuts on the output surface. Embedding Kerr nonlinear material in nanoslits is employed to modulate the output beam. A two dimensional nonlinear-dispersive finite-difference time-domain (2D N-D-FDTD) method is utilized. The performance parameters of the proposed lens such as focal length, full-width half-maximum, depth of focus and the efficiency of focusing are investigated. The structure is illuminated by a TM-polarized plane wave and a Gaussian beam. The effect of the beam waist of the Gaussian beam and the incident light intensity on the focusing effect is explored. An exact formula is proposed to derive electric field E from electric flux density D in a Kerr-Dispersive medium. Surface plasmon (SPs) modes and Fabry-Perot (F-P) resonances are used to explain the physical origin of the light focusing phenomenon. Focused ion beam milling can be implemented to fabricate the proposed lens. It can find valuable potential applications in integrated optics and for tuning purposes.