• Title/Summary/Keyword: MIM(Metal-Insulator-Metal)

Search Result 105, Processing Time 0.024 seconds

$Ar/O_2$가스비에 따른 (Ba,Sr)$TiO_3$ 박막의 유전특성에 관한 연구

  • 이태일;박인철;김홍배
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.99-99
    • /
    • 2000
  • 본 논문에서는 RF Magnetron Sputtering 방법으로 Ba0.5Sr0.5TiO3 박막을 Pt/Ti/SiO2/Si 기판위에 증착하였다. Ar과 O2의 가스비는 90:10부터 50:50까지 O2의 함유비율을 10씩 증가시켰으며, 모든 조건에서 증착온도는 실온으로 설정하였다. Ba0.5Sr0.5TiO3 박막의 증착후 각 가스비에 따른 동일한 샘플에 대해 RTA(Rapid Thermal Anneal) 장비를 이용하여 $600^{\circ}C$에서 열처리는 하여 열처리 효과에 대한 특성도 조사하였다. 최종적으로 제작한 BST 커패시터는 Pt/BST/Pt 구조를 갖는 MIM(Metal-Insulator-Metal) 구조의 커패시터였으며 상.하부 전극은 전기적 특성이 우수한 Pt를 사용하였다. 제작된 BST 커패시터를 대해 유전 특성을 조사하기 위해 C-V 측정을 한 결과 산소 함유량이 증가함에 따라 유전율의 증가를 보여주었으며, 제작된 샘플 중 산소 함유량이 30인 샘플은 300이상의 우수한 유전율을 나타내었다. 또한 누설 전류특성에서는 모든 샘플에 대해 1.0V의 인가전압에서 1.0$\times$106A/cm2 이하의 누설 전류 밀도 값을 가져 전기적으로도 안정된 커패시터 구조임을 확인하였다. 또한 막의 증착상태와 미세구조관찰을 위해 SEM 측정을 하였고 구성성분 결정 구조를 알기 위해 XRD 측정도 시행하였다. 결과적으로 본 논문에서 제작된 커패시터 중 Sr/O의 비율이 70:30인 샘플이 가장 우수한 유전특성을 나타내었고, 이 샘플의 유전특성과 누설 전류 특성은 차세대 메모리인 1GigaByte급 DRAM에 적용 가능한 조건들을 만족시켰다.

  • PDF

Condensable InP Quantum Dot Solids

  • Tung, Dao Duy;Dung, Mai Xuan;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.541-541
    • /
    • 2012
  • InP quantum dots capped by myristic acid (InP-MA QDs) were synthesized by a typical hot injection method using MA as stablizing agent. The current density across the InP-MA QDs thin film which was fabricated by spin-coating method is about $10^{-4}A/cm^2$ at the electric field of 0.1 MV/cm from I-V measurement on a metal-insulator-metal (MIM) device. The low conductivity of the InP-MA QDs thin film is interpreted as due to the long interdistances among the dots governed by the MA molecules. Therefore, replacing the MA with thioacetic acid (TAA) by biphasic ligand exchange was conducted in order to obtain TAA capped InP QDs (InP-TAA). InP-TAA QDs were designed due to: 1) the TAA is very short molecule; 2) the thiolate groups on the surface of the InP-TAA QDs are expected to undergo condensation reaction upon thermal annealing which connects the QDs within the QD thin film through a very short linker -S-; and 3) TAA provides better passivation to the QDs both in the solution and thin film states which minimizing the effect of surface trapping states.

  • PDF

Enhanced fT and fMAX SiGe BiCMOS Process and Wideband Power Efficient Medium Power Amplifier

  • Bae, Hyun-Cheol;Oh, Seung-Hyeub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.232-238
    • /
    • 2008
  • In this paper, a wideband power efficient 2.2 GHz - 4.9 GHz Medium Power Amplifier (MPA), has been designed and fabricated using $0.8{\mu}m$ SiGe BiCMOS process technology. Passive elements such as parallel-branch spiral inductor, metal-insulator-metal (MIM) capacitor and three types of resistors are all integrated in this process. This MPA is a two stage amplifier with all matching components and bias circuits integrated on-chip. A P1dB of 17.7 dBm has been measured with a power gain of 8.7 dB at 3.4 GHz with a total current consumption of 30 mA from a 3 V supply voltage at $25^{\circ}C$. The measured 3 dB bandwidth is 2.7 GHz and the maximum Power Added Efficiency (PAE) is 41 %, which are very good results for a fully integrated Medium PA. The fabricated circuit occupies a die area of $1.7mm{\times}0.8mm$.

Capacitance Properties of $Poly-\gamma-Benzyl\;_L-Glutamate$ in Organic Ultra Thin Films ($Poly-\gamma-Benzyl\;_L-Glutamate$ 유기초박막의 정전용량특성)

  • Kim, Byung-Geun;Kim, Chang-Bok;Kim, Young-Keun;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.147-149
    • /
    • 2002
  • Recently, the study on development of electrical and electronic device is done to set miniature, high degrees of integration and efficiency by using inorganic materials the study of Langmuir-Boldgett(LB) method that uses organic materials because of the limitation for the ultrasmall size. The structure of MIM(Metal-Insulator-Metal) device is Cr-Au/PBLG/ Al. the number of accumulated layers are 1, 3, 5, 7, 9. The I-V characteristic of the device is measured from 0[V] to 2[V] and the characteristic of current-time of the devices. We have investigated the capacitance because PBLG system have a accumulated layers the maximum value of measured current is increased as the number of accumulated layers are decreased. The capacitor properties of a thin film is better as the distance between electrodes is smaller. The results have shown the insulating materials and could control the conductivity by accumulated layers.

  • PDF

Characteristics of BMN Thin Films Deposited on Various Substrates for Embedded Capacitor Applications (임베디드 커패시터의 응용을 위해 다양한 기판 위에 평가된 BMN 박막의 특성)

  • Ahn, Kyeong-Chan;Kim, Hae-Won;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.342-347
    • /
    • 2007
  • $Bi_6Mg_2Nb_4O_{21}(BMN)$ thin films were deposited at various substrates by sputtering system for embedded capacitor applications. BMN thin films deposited at room temperature are manufactured as MIM(Metal/Insulator/Metal) structures. Dielectric properties and leakage current density were investigated as a function of various substrates and thickness of BMN thin films. Leakage current density of BMN thin films deposited on CCL(Copper Clad Laminates) showed relatively high value ($1{\times}10^{-3}A/cm^2$) at an applied field of 300 kV/cm on substrates, possibly due to relatively high value of roughness(rms $50{\AA}$) of CCL substrates. 100 nm-thick BMN thin films deposited on Cu/Ti/Si substrates showed the capacitance density of $300 nF/cm^2$, a dielectric constant of 32, a dielectric loss of 2 % at 100 kHz and the leakage current density of $1{\times}10^{-6}A/cm^2$ at an applied field of 300 kV/cm. BMN capacitors are expected to be promising candidates as embedded capacitors for printed circuit board(PCB).

Formation of PVP- Based Organic Insulating Layers and Fabrication of OTFTs (PVP-기반 유기 절연막 형성과 OTFT 제작)

  • Jang, Ji-Geun;Seo, Dong-Gyoon;Lim, Yong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.302-307
    • /
    • 2006
  • The formation and processing of organic insulators on the device performance have been studied in the fabrication of organic thin film transistors (OTFTs). The series of polyvinyls, poly-4-vinyl phenol(PVP) and polyvinyltoluene (PVT), were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series: PVP(10 wt%) copolymer, 5 wt% cross-linked PVP(10 wt%), PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current characteristics. Finally, inverted staggered OTFTs using the PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%) as gate insulators were fabricated on the polyether sulphone (PES) substrates. In our experiments, we could obtain the maximum field effect mobility of 0.31 $cm^2/Vs$ in the device from 5 wt% cross-linked PVP(20 wt%) and the highest on/off current ratio of $1.92{\times}10^5$ in the device from 10 wt% cross-linked PVP(20 wt%).

Formation and Characterization of Polyvinyl Series Organic Insulating Layers (폴리비닐 계열 유기절연막 형성과 특성평가)

  • Jang Ji-Geun;Jeong Jin-Cheol;Shin Se-Jin;Kim Hee-Won;Kang Eui-Jung;Ahn Jong-Myong;Seo Dong-Gyun;Lim Yong-Gyu;Kim Min-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.39-43
    • /
    • 2006
  • The polyvinyl series organic films as gate insulators of thin film transistor(TFT) have been processed and characterized on the polyether sulphone (PES) substrates . The poly-4-vinyl phenol(PVP) and polyvinyl toluene (PVT) were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series; copolymer PVP(10 wt%), 5wt% cross-linked PVP(10 wt%), copolymer PVP(20 wt%), 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current of 1.2 pA at ${\pm}10V$. The ms value of surface roughness and the capcitance per unit area are 2.41 and $1.76nF/cm^2$ in the case of 10 wt% cross-linked PVP(20 wt%) layer, respectively.

  • PDF

Electrical Properties of MIM and MIS Structure using Carbon Nitride Films

  • Lee, Hyo-Ung;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.257-261
    • /
    • 2006
  • Nano-structured carbon nitride $(CN_x)$ films were prepared by reactive RF magnetron sputtering with a DC bias at various deposition conditions, and the physical and electrical properties were investigated. FTIR spectrum indicated an ${alpha}C_3N_4$ peak in the films. The carbon nitride film deposited on Si substrate had a nano-structured surface morphology. The grain size was about 20 nm and the deposition rate was $1.7{\mu}m/hr$. When the $N_2/Ar$ ratio was 3/7, the level of nitrogen incorporation was 34.3 at%. The film had a low dielectric constant. The metal-insulator-semiconductor (MIS) capacitors that the carbon nitride was deposited as insulators, exhibited a typical C-V characteristics.

EEPROM Charge Sensors (EEPROM을 이용한 전하센서)

  • Lee, Dong-Kyu;Jin, Hai-Feng;Yang, Byung-Do;Kim, Young-Suk;Lee, Hyung-Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.605-610
    • /
    • 2010
  • The devices based on electrically erasable programmable read-only memory (EEPROM) structure are proposed for the detection of external electric charges. A large size charge contact window (CCW) extended from the floating gate is employed to immobilize external charges, and a control gate with stacked metal-insulator-metal (MIM) capacitor is adapted for a standard single polysilicon CMOS process. When positive voltage is applied to the capacitor of CCW of an n-channel EEPROM, the drain current increases due to the negative shift of its threshold voltage. Also when a pre-charged external capacitor is directly connected to the floating gate metal of CCW, the positive charges of the external capacitor make the drain current increase for n-channel, whereas the negative charges cause it to decrease. For an p-channel, however, the opposite behaviors are observed by the external voltage and charges. With the attachment of external charges to the CCW of EEPROM inverter, the characteristic inverter voltage behavior shifts from the reference curve dependent on external charge polarity. Therefore, we have demonstrated that the EEPROM inverter is capable of detecting external immobilized charges on the floating gate. and these devices are applicable to sensing the pH's or biomolecular reactions.

원자층증착법을 이용한 Y2O3 박막 형성 및 저항 스위칭 특성

  • Jeong, Yong-Chan;Seong, Se-Jong;Lee, Myeong-Wan;Park, In-Seong;An, Jin-Ho;Rao, Venkateswara P.;Dussarrat, Christian;Noh, Wontae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.229.2-229.2
    • /
    • 2013
  • Yttrium oxide (Y2O3)는 band gap이 5.5 eV 정도로 상대적으로 넓고, 굴절상수가 1.8, 유전율이 10~15, Silicon 과의 격자 불일치가 작은 특성을 가지고 있다. 또한 녹는점이 높아 열적으로 안정하기 때문에 전자소자 및 광학소자에 다양하게 응용되는 물질이다. Y2O3 박막은 다양한 방법으로 증착할 수 있는데, 그 방법에는 e-beam evaporation, laser ablation, sputtering, thermal oxidation, metal-organic chemical vapor deposition, and atomic layer deposition (ALD) 등이 있다. ALD는 기판 표면에 흡착된 원자들의 자기 제한적 반응에 의하여 박막이 증착되기 때문에 박막 두께조절이 용이하고 step coverage와 uniformity 측면에서 큰 장점이 있다. 이전에는 Y(thd)3 and Y(CH3Cp)3 와 같은 금속 전구체를 이용하여 ALD를 진행하여, 증착 속도가 낮고 defect이 많아 non-stoichiometric한 조성의 박막이 증착되는 문제점이 있었다. 이번 연구에서는, (iPrCp)2Y(iPr-amd)와 탈이온수를 사용하여 Y2O3 박막을 증착하였다. Y2O3 박막 증착에 사용한 Y 전구체는 상온에서 액체이고 $192^{\circ}C$ 에서 1 Torr의 높은 증기압을 갖는다. Y2O3 박막 증착을 위하여 Y 전구체는 $150^{\circ}C$ 로 가열하여 N2 gas를 이용하여 bubbling 방식으로 공정 챔버 내로 공급하였다. Y2O3 박막의 ALD window는 $250{\sim}350^{\circ}C$ 였으며, Y 전구체의 공급시간이 5초에 다다르자 더 이상 증착 두께가 증가하지 않는 자기 제한적 반응을 확인할 수 있었다. 그리고 증착된 Y2O3 박막의 특성 분석을 위해 Atomic force microscopy (AFM)과 X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) 를 진행하였다. 박막의 Surface morphology 는 매끄럽고 uniform 하였으며, 특히 고체 금속 전구체를 사용했을 때와 비교하여 수산화물이 거의 없는 박막을 얻을 수 있었다. 그리고 조성 분석을 통해 증착된 Y2O3 박막이 stoichiometric하다는 것을 알수 있었다. 또한 metal-insulator-metal (MIM) 구조 (Ru/Y2O3/Ru) 의 resistor 소자를 형성하여 저항 스위칭 특성을 확인하였다.

  • PDF