• 제목/요약/키워드: MHC Class II

검색결과 121건 처리시간 0.025초

영지버섯 생장점 단백다당체 GLB의 대식세포 활성화 효과 (Activation of Macrophages by GLB, a Protein-polysaccharide of the Growing Tips of Ganoderma Lucidum)

  • 오정연;조경주;정수현;김진향;;정경수
    • 약학회지
    • /
    • 제42권3호
    • /
    • pp.302-306
    • /
    • 1998
  • In the previous study we described the antitumor activity of GLB, a protein-polysaccharide fraction of the growing tips of Ganoderma lucidum, against sarcoma 180 solid tu mor in ICR mice. In this study we investigated the stimulatory activity of GLB on macrophages. When analyzed using a flow cytometer, GLB ($100{\mu}g/ml$) was found to increase the phagocytic activity of the BALB/c mouse peritoneal macrophages as well as chicken macrophage BM2CL cells against FITC-labeled C.albicans by 55.2% and 21.2%, respectively. GLB also increased the spreading and the expression of MHC class II molecules of BM2CL cells as well as the mouse peritoneal macrophages. From these results, it is clear that GLB is a strong stimulator to the macrophages.

  • PDF

백혈구 표면항원 특이 단크론항체를 이용한 한우의 말초혈액 백혈구 아군에 관한 연구 (Subpopulation in periopheral blood leukocyte of Korean native cattle by using monoclonal antibodies specific to bovine leukocyte differentiation antigen)

  • 문진산;박용호;정석찬;구복경;강병규
    • 대한수의학회지
    • /
    • 제36권2호
    • /
    • pp.337-348
    • /
    • 1996
  • The proportion of leukocyte subpopulation in the host is of a great importance in understanding their functions and disease progress. Many methods have been developed to seperate leukocytes and to measure their activities. Characterization of immune cell subpopulations in Korean native cattle was performed using a set of monoclonal antibodies specific which are specific to bovine leukocyte differentiation antigen. Peripheral blood leukocytes from fifty Korean native and ten Holstein cattle were collected and analyzed for the investigation of leukocyte subpopulation by using monoclonal antibodies and flow cytometry. The result indicated that Korean native cattle have significantly higher proportion of leukocyte subpopulations expressing MHC class II molecules and BoCD4 than Holstein cattle.

  • PDF

Construction, and In Vitro and In Vivo Analyses of Tetravalent Immunoadhesins

  • Cho, Hoonsik;Chung, Yong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1066-1076
    • /
    • 2012
  • Previous observations demonstrated that various immunosuppressive agents and their combination therapies can increase allograft survival rates. However, these treatments may have serious side effects and cannot substantially improve or prolong graft survival in acute graft-versus-host disease (GVHD). To improve the therapeutic potency of divalent immunoadhesins, we have constructed and produced several tetravalent forms of immunoadhesins comprising each of cytotoxic T-lymphocyte-associated antigen-4 (CTLA4), CD2, and lymphocyte activation gene-3 (LAG3). Flow cytometric and T cell proliferation analyses displayed that tetravalent immunoadhesins have a higher binding affinity and more potent efficacy than divalent immunoadhesins. Although all tetravalent immunoadhesins possess better efficacies, tetravalent forms of CTLA4-Ig and LAG3-Ig revealed higher inhibitory effects on T cell proliferation than tetravalent forms of TNFR2-Ig and CD2-Ig. In vitro mixed lymphocytes reaction (MLR) showed that combined treatment with tetravalent CTLA4-Ig and tetravalent LAG3-Ig was highly effective for inhibiting T cell proliferation in both human and murine allogeneic stimulation. In addition, both single tetravalent-form and combination treatments can prevent the lethality of murine acute GVHD. The results of this study demonstrated that co-blockade of the major histocompatibility complex class (MHC)II:T cell receptor (TCR) and CD28:B7 pathways by using tetravalent human LAG3-Ig and CTLA4-Ig synergistically prevented murine acute GVHD.

Immunomodulatory Effects of Eckol, a Pure Compound of Ecklonia Cava, on Dendritic Cells

  • Kim, Mi-Hyoung;Joo, Hong-Gu
    • IMMUNE NETWORK
    • /
    • 제6권4호
    • /
    • pp.199-203
    • /
    • 2006
  • Background: Eckol purified from Ecklonia cava, a brown alga has been known to have cytoprotective effects on some cell lines against oxidants and ionizing radiation. However, there is no study about the effects of eckol on immune cells. Methods: Bone marrow (BM)-derived dendritic cells (DCs) were used to demonstrate the immunomodulatory effects of eckol on DCs, such as viability, the expression of surface markers, allogeneic stimulating capacity using MTI, flow cytometric, $^3H$-thymidine incorporation assay. Results: Eckol did protect DCs against cytokine withdrawal-induced apoptosis in a concentration dependent manner based on MTT assay. And also, it increased the expression of MHC class II and CD86 (B7.2) molecules, maturation markers, on the surface of viable DCs gated in FACS analysis. Furthermore, eckol-treated DCs stimulated the proliferation of allogeneic $CD4^+$ T lymphocytes compared to imDCs in $^3H$-thymidine incorporation assay. $CD4^+$ T lymphocytes activated with eckol-treated DCs produced the larger amount of IFN-${\gamma}$ and IL-4 than those cells with imDCs. Conclusion: Taken together, we demonstrate in this study that eckol, a pure compound of Ecklonia cava, may modulate the immune responses through the phenotypic and functional changes of DCs.

Induction of Functional Changes of Dendritic Cells by Silica Nanoparticles

  • Kang, Kyeong-Ah;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • 제12권3호
    • /
    • pp.104-112
    • /
    • 2012
  • Silica is one of the most abundant compounds found in nature. Immoderate exposure to crystalline silica has been linked to pulmonary disease and crystalline silica has been classified as a Group I carcinogen. Ultrafine (diameter <100 nm) silica particles may have different toxicological properties compared to larger particles. We evaluated the effect of ultrafine silica nanoparticles on mouse bone marrow-derived dendritic cells (BMDC) and murine dendritic cell line, DC2.4. The exposure of dendritic cells (DCs) to ultrafine silica nanoparticles showed a decrease in cell viability and an induction of cell death in size- and concentration-dependent manners. In addition, in order to examine the phenotypic changes of DCs following co-culture with silica nanoparticles, we added each sized-silica nanoparticle along with GM-CSF and IL-4 during and after DC differentiation. Expression of CD11c, a typical DC marker, and multiple surface molecules such as CD54, CD80, CD86, MHC class II, was changed by silica nanoparticles in a size-dependent manner. We also found that silica nanoparticles affect inflammatory response in DCs in vitro and in vivo. Finally, we found that p38 and NF-${\kappa}B$ activation may be critical for the inflammatory response by silica nanoparticles. Our data demonstrate that ultrafine silica nanoparticles have cytotoxic effects on dendritic cells and immune modulation effects in vitro and in vivo.

CD83 expression induced by CpG-DNA stimulation in a macrophage cell line RAW 264.7

  • Park, Min Chul;Kim, Dongbum;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • 제46권9호
    • /
    • pp.448-453
    • /
    • 2013
  • CpG-DNA has various immunomodulatory effects in dendritic cells, B cells, and macrophages. While induction of cytokines by CpG-DNA has been well documented in macrophages, the expression of costimulatory molecules in CpG-DNA treated macrophages has not yet been defined. Therefore, we investigated the effects of CpG-DNA on the expression of costimulatory molecules in RAW 264.7 cells. The surface expression of CD80 was slightly increased and CD83 expression was significantly increased in response to CpG-DNA. However, the expression of CD86 and MHC class II was not changed. As expression of CD83 mRNA was also increased by CpG-DNA, CD83 expression is regulated at a transcriptional level. To understand the contribution of signaling pathways to CD83 induction, we used pathway specific inhibitors. The NF-${\kappa}B$ inhibitor significantly reduced surface expression of CD83 as well as phagocytic activity of RAW 264.7 cells. Therefore, CD83 expression may contribute to the immunostimulatory effects of CpG-DNA in macrophage cells.

CD4O Activation Protects Dendritic Cells from Anticancer Drug-Induced Apoptosis

  • Jun, Jae-Yeon;Joo, Hong-Gu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권5호
    • /
    • pp.255-259
    • /
    • 2003
  • Dendritic cells (DCs) play a critical role in various immune responses involving $CD4^+$ T cells and have been used to generate anti-tumor immunity. Chemotherapy induces severe side effects including immunosuppression in patients with cancer. Although immunosuppression has been studied, the effects of anticancer drugs on DCs are not fully determined. In this study, we demonstrated that CD40 activation strongly protected DCs from 5-fluorouracil (5-FU) or mitomycin C-induced apoptosis. DCspecific surface markers, including CD11c and major histocompatibility complex (MHC) class II, were used for identifying DCs. CD 40 activation with anti-CD40 mAb significantly enhanced the viability of DCs treated with 5-FU or mitomycin C, assayed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide). Fluorescence staining and analysis clearly confirmed the enhancing effect of anti-CD40 mAb on the viability of DCs, suggesting that CD40 activation may transduce critical signals for the viability of DCs. Annexin V staining assay showed that CD40 significantly protected DCs from 5-FU or mitomycin C-induced apoptosis. Taken together, this study shows that CD40 activation with anti-CD40 mAb has strong anti-apoptosis effect on DCs, suggesting that CD40 activation may overcome the immunosuppression, especially downregulation of number and function of DCs in chemotherapy-treated cancer patients.

IL-4 Suppresses UVB-induced Apoptosis in Skin

  • Hwang, Ha-Young;Choi, Soo-Young;Kim, Tae-Yoon
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.36-43
    • /
    • 2007
  • In this study, cutaneous role of IL-4 in UVB-induced apoptosis was investigated using transgenic mice with skin-specific expression of IL-4 (IL-4 Tg mice). The transgenic mice did not show any gross clinical abnormalities. However, epidermis was thickened and increased MHC class II positive cells were detected as well as enhanced expression of inflammatory cytokines such as IL-1 and TNF-$\alpha$ in skin. In addition, histological analysis revealed increased infiltration of lymphocytes, acanthosis, hyperkeratosis, and parakeratosis in skin of IL-4 Tg mice. The physiological effect of IL-4 overexpression in skin against environmental stimulus such as UVB was investigated by irradiating wild-type and IL-4 Tg mice with UVB followed by evaluation of apoptosis. The result demonstrated suppressed apoptosis in epidermis of IL-4 Tg mice compared with wild-type mice. To further assess anti-apoptotic function of IL-4 in keratinocytes, stable cell clones were made where IL-4 was constitutively overexpressed and examined for UVB-induced apoptosis. The results showed that apoptosis was remarkably decreased in IL-4 over-expressing cell clones compared with that in mock transfected cells. Collectively, data presented here shows that IL-4 has an inhibitory effect against UVB-induced apoptosis in keratinocytes, suggesting that IL-4 may be an important regulator in cutaneous immunity against UVB.

Increase in Hypotonic Stress-Induced Endocytic Activity in Macrophages via ClC-3

  • Yan, Yutao;Ding, Yu;Ming, Bingxia;Du, Wenjiao;Kong, Xiaoling;Tian, Li;Zheng, Fang;Fang, Min;Tan, Zheng;Gong, Feili
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.418-425
    • /
    • 2014
  • Extracellular hypotonic stress can affect cellular function. Whether and how hypotonicity affects immune cell function remains to be elucidated. Macrophages are immune cells that play key roles in adaptive and innate in immune reactions. The purpose of this study was to investigate the role and underlying mechanism of hypotonic stress in the function of bone marrow-derived macrophages (BMDMs). Hypotonic stress increased endocytic activity in BMDMs, but there was no significant change in the expression of CD80, CD86, and MHC class II molecules, nor in the secretion of TNF-${\alpha}$ or IL-10 by BMDMs. Furthermore, the enhanced endocytic activity of BMDMs triggered by hypotonic stress was significantly inhibited by chloride channel-3 (ClC-3) siRNA. Our findings suggest that hypotonic stress can induce endocytosis in BMDMs and that ClC-3 plays a central role in the endocytic process.

B 임파구의 분화 (B-cell Differentiation)

  • 양만표;이창우;권종국;장곡천독언
    • 한국임상수의학회지
    • /
    • 제8권1호
    • /
    • pp.1-10
    • /
    • 1991
  • The B-lymphocyte differentiation from committed B-cell progenitors to antibody-secreting cells was discussed. B-cell progenitors derived from hematopoietic stem cells undergo the rearrangement of immunoglobulin(Ig) gene. The earliest cells as B-cell precursors have cytoplasmic Is(${\mu}$ chain). The entire Is molecule is expressed on the surface after synthesis of L chain. The resting B cells(Go stage) stimulated by binding antigen via Ig-receptors are activated(G$_1$ stage) and followed by proliferation(S stage), coupled with further selection(affinity maturation. class switch). The production of antibody against a particular antigen depends on the activation of B cells with surface Is capable of reacting with that antigen. This process does not occur in isolation but is controlled by helper and suppressor T cells and antigen presenting cells(APC). The mechanism of T cell-dependent B-cell response for production of antibody is largely explained by the cell to cell cooperation and soluble helper factors of T cells. 1) The antigen specific B cells and helper T cells are linked by Is-receptors, leading to the delivery of helper signals to the B cells. 2) Helper T cells recognize the processed antigen-derived peptides with the MHC class II molecules(la antigen) and is stimulated to secrete B-cell proliferation and differentiation factors which activate B cells of different antigenic specificity. The two models are shown currently 1) At low antigen concentration, only the antigen-specific B cell binds antigen and presents antigen-derived peptides with la molecules to helper T cells, which are stimulated to secrete cytokines(IL-4, IL-5, etc.) and 2) At high antigen concentration, antigen-derived peptides are presented by specific B cells, by B cells that endocytose the antigens, as well as by APC Cytokines secreted from helper T cells also lead to the activation of B cells and even bystander B cells in the on- vironmment and differentiate them into antibody-secreting plasma cells.

  • PDF