• Title/Summary/Keyword: MFL

Search Result 92, Processing Time 0.029 seconds

A Study on the Signal Correction for Multiple Defects in MFL Type Nondestructive Testing System (MFL 비파괴 검사 시스템에서 다중 결함에 의한 신호 왜곡과 신호 보정에 관한 연구)

  • Park, Jeng Hoon;Kim, Hui Min;Park, Gwan Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • MFL (Magnetic flux leakage) type nondestructive testing has been used for inspection of underground gas pipelines to find metal defects by detecting magnetic leakage signal. Because the underground gas pipeline is exposed by environment such as high pressure with great humidity, external defects are easily formed on the surface of pipelines and they are being grouped respectively. These adjacent defects cause the signal distortion of leakage flux so that it is hard to estimate the shape information of defects. In this paper, we performed to study of the signal distortion and compensating method for multiple defects in MFL type nondestructive testing system by using 3D FEM simulation. This paper proposes the basic algorithm of defect signal analysis on multiple defects on the surface of 30 inch diameter pipeline.

A development on the compensating technique of the signal distortion and an Analysis of the signal in the CMFL type nondestructive testing system for detecting axial cracks (CMFL 비파괴 검사 시스템에서 축방향 결함 위치에 따른 신호의 왜곡 분석 및 보정 기술 개발)

  • Kim, Hui-Min;Kim, Jin-Sung;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.922-923
    • /
    • 2011
  • 비파괴 검사방법 중 자기누설 방법을 이용한 방법은 높은 자기 투자율을 갖고 있는 배관 검사에 적합하다. 자기누설 방식이 적용된 시스템을 MFL PIG라고 한다. MFL PIG는 금속 손실이나 부식과 같은 결함을 검출하는데 높은 성능을 보인다. 하지만 이 시스템은 축방향으로 자기장을 형성하여 투자율이 큰 금속 배관을 포화시켜 결함이 있는 부분에서 발생하는 누설자속을 검출하는 방식이기 때문에 축방향으로 발생하는 미소 결함은 자기장이 통과하는 단면이 작고 누설자속이 거의 없어 검출이 어렵다. 축방향 미소결함을 검출하기 위해 기존의 MFL PIG를 개선시킨 것이 CMFL PIG이며, 이것은 자기장을 원주방향으로 형성하여 결함에서의 자기 누설을 최대화 가능하다. 본 논문에서는 축방향 미소 결함의 검출이 가능한 CMFL 비파괴 검사 방법에 관한 논의와 이를 이용하여 축방향 결함의 위치이동에 따른 왜곡 신호의 분석 및 보정하는 방법에 관해 제안한다.

  • PDF

Defect depth estimation using magnetic flux leakage measurement for in-line inspection of pipelines (자기 누설 신호의 측정을 이용한 배관의 결함 깊이 추정)

  • Moon, Jae-Kyoung;Lee, Seung-Hyun;Lee, In-Won;Park, Gwan-Soo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.328-333
    • /
    • 2006
  • Magnetic Flux Leakage (MFL) methods are widely employed for the nondestructive evaluation (NDE) of gas pipelines. In the application of MFL pipeline inspection technology, corrosion anomalies are detected and identified via their leakage filed due to changes in wall thickness. The gas industry is keenly interested in automating the interpretation process, because a large amount of data to be analyzed is generated for in-line inspection. This paper presents a novel approach to the tasks of data segmentation, feature extraction and depth estimation from gas pipelines. Also, we will show that the proposed method successfully identifying artificial defects.

Implementation of Effective Visualization Methods for Sensor Data Analysis (센서데이터 분석을 위한 효율적인 가시화 기법의 구현)

  • Seo, Won-Suk;Yun, Chang-Geol;Jung, Soon-Ki;Rho, Yong-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.530-536
    • /
    • 2007
  • 본 논문에서는 MFL(Magnetic flux leckage) 피그(PIG : Pipeline Inspection Gauge)에서 획득된 센서데이터의 분석을 위한 가시화 기법의 구현을 소개한다. MFL피그는 배관 내부에 삽입되어 배관의 결함이나 특징정보를 파악하기 위해 사용되는 장비로, 다양한 종류의 센서를 지니고 있으며, 각 센서에서 나온 값들은 피그에 탑재된 저장장치에 빠른 샘플링 속도로 저장된다. 분석가는 피그에 저장된 데이터를 가시화 도구를 사용하여, 피그에 샘플링 된 데이터를 통해 배관의 용접부위나 결함과 같은 특징정보를 찾아야 하고, 특징정보인 부분과 그렇지 않은 부분을 쉽게 구별 할 수 있어야 한다. 하지만 센서의 값에 따라 색상에 맵핑하여 보여주는 2차원 가시화 기법만으로는 효율적인 분석이 어렵다. 본 논문은 이를 극복하기 위하여, 센서 값에 맵핑되는 색상 스펙트럼 편집 및 기본 값 조정 기능을 제안한다.

  • PDF

Optimum Design of a Non-Destructive Testing System to Maximize Magnetic Flux Leakage

  • Park, G.S;Jang, P.W;Rho, Y.W
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • This paper describes the design method of a magnetic system to maximize the magnetic flux leakage (MFL) in a non-destructive testing (NDT) system. The defect signals in a MFL type NDT system mainly depend on the change of the magnetic leakage flux in the region of a defect. The characteristics of the B-H curves are analysed and a design method to define the operating point on B-H curves for maximum leakage is performed. The computed MFL signal by a nonlinear finite element method is verified by measurement using Hall sensors mounted on the 6 legs PIG, the traveling detector unit in gas pipe, in an 8 inch test tube with defects. The rhombic defects could be successfully identified from the defect signals.

  • PDF

Non-destructive Testing and Numerical Analysis for Ferromagnetic Plates using Magnetic Flux Leakage Method (강자성체 평판의 자속 누설 탐상 비파괴 실험 및 수치해석)

  • Kim, Sean;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.126-128
    • /
    • 2001
  • In this paper, Magnetic Flux Leakage(MFL) method is used to detect surface defect in ferromagnetic plate. Surface defects are created on the SM 45C ferromagnetic plate and magnetizing equipment is composed to perform MFL nondestructive testing. The length and width of defect is twice the thickness of ferromagnetic plate, and defects with different depths are made artificially for the experiment. Also, NdFeB magnet in magnetizing equipment is used to make magnetic flux. This paper shows that it is possibile to detect 10% defect and to analyze numerically for any defect using MFL method.

  • PDF

Inspection of Non-metallic Inclusions in Thin Steel Sheets Using Magnetic Flux Leakage Method (누설자속법을 이용한 박강판의 결함탐상)

  • 임종수;손대락
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.302-309
    • /
    • 2000
  • An MFL (Magnetic Flux Leakage) testing system has been developed in order to inspect the non-metallic inclusions in the thin steel sheets. We have made a differential type flux-gate magnetometer using the measurement of apparent coercive field strength of soft magnetic core. The specifications of the electromagnet was determined using FEM software, and MFL testing system with 3 axis degree of freedom was constructed. The feasibility testing for non-metallic inclusion was shown using the system. By digitizing MFL signal and using 2-D graphic display, we could identify various surface defects other than the inclusions.

  • PDF

Optimum Design of the Non-Destructive Testing System to Maximize the Magnetic Flux Leakages

  • Park, G. S.;P. W. Jang;Park, Y. W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.539-545
    • /
    • 2000
  • This paper describes the design method of the magnetic system to maximize the magnetic flux leakage (MFL) in non-destructive testing (NDT) system. The defect signals in MFL type NDT system mainly depends on the change of the magnetic leakage flux in the region of defect. The characteristics of the B-H curves are analyzed and the design method to define the operating point in B-H curves for the maximum leakage is performed. The computed MFL signal by nonlinear finite element method is verified by measurement using Hall sensors mounted on the 6 legs PIG in the 8 inches test tube with defects. The rhombic defects could be successfully composed from the defect signals.

  • PDF

Microbial Fertilizer Containing Lactobacillus fermentum Improved Creeping Bentgrass Density (유산균(Lactobacillus fermentum) 함유 미생물제제의 크리핑 벤트그래스 밀도개선 효과)

  • Jo, Gi-Woong;Kim, Young-Sun;Ham, Soun-Kyu;Bae, Eun-Ji;Lee, Jae-Pil;Kim, Doo-Hwan;Kim, Woo-Sung;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.322-332
    • /
    • 2017
  • Microbial fertilizer has been used to prompt turfgrass growth and quality and to prevent turfgrass diseases in turfgrass management of golf courses. This study was conducted to evaluate effects of microbial fertilizer containing Lactobacillus fermentum (MFcL) on changes of turfgrass quality and growth by investigating turf color index, chlorophyll index, clipping yield, and nutrient content in the turfgrass tissue. Treatments were designed as follows; non-fertilizer (NF), control fertilizer (CF), MFcL treatments [CF+$1.0g\;m^{-2}$(MFL), CF+$2.0g\;m^{-2}$ (2MFL)], and only MFcL treatment (OMF; $1.0g\;m^{-2}$ MFL). Chemical properties of soil by application of MFcL was unaffected. Turf color index, chlorophyll index, clipping yield and nutrient content and uptake of MFcL treatments were similar to CF. Furthermore, turfgrass shoot density of MFL was increased by 20% than that of CF, and that of OMF by 22% than NF. These results show that the application of microbial fertilizer containing L. fermentum increased turfgrass shoot density, which is not attributed to nutrient uptake in this study, but needs to be further investigated with other mechanisms such as biostimulant induction or phytohormone production.

Study on MFL Technology for Defect Detection of Railroad Track Under Speed-up Condition (증속에 따른 누설자속기반 철도레일 결함탐상 기술 적용성 검토)

  • Kang, Donghoon;Oh, Ji-Taek;Kim, Ju-Won;Park, Seunghee
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.401-409
    • /
    • 2015
  • Defects generated in a railroad track that guides the railroad vehicle have the characteristic of growing fast; as such, the detection technology for railroad track defects is very important because defects can eventually cause mass disasters like derailments. In this study, a speed-up test facility was fabricated to investigate the feasibility of using magnetic flux leakage (MFL) technology for defect detection in a railroad track under speed-up condition; a test was conducted using a railroad track specimen with defects. For this purpose, an MFL sensor head dedicated to the configuration of the railroad was designed and test specimens with artificial defects on their surfaces were manufactured. Using the test facility, a speed-up test ranging from 4km/h to 12km/h was performed and defects including locations were successfully detected from MFL signals induced by defects with enhanced visibility by differentiating raw MFL signals. In the future, it should be possible to apply this system to a high-speed railroad inspection car by improving the lift-off stability that is necessary for speed-up of the developed MFL sensor system.