• Title/Summary/Keyword: MEMS device

Search Result 255, Processing Time 0.025 seconds

The research on the MEMS device improvement which is necessary for the noise environment in the speech recognition rate improvement (잡음 환경에서 음성 인식률 향상에 필요한 MEMS 장치 개발에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1659-1666
    • /
    • 2018
  • When the input sound is mixed voice and sound, it can be seen that the voice recognition rate is lowered due to the noise, and the speech recognition rate is improved by improving the MEMS device which is the H / W device in order to overcome the S/W processing limit. The MEMS microphone device is a device for inputting voice and is implemented in various shapes and used. Conventional MEMS microphones generally exhibit excellent performance, but in a special environment such as noise, there is a problem that the processing performance is deteriorated due to a mixture of voice and sound. To overcome these problems, we developed a newly designed MEMS device that can detect the voice characteristics of the initial input device.

Design of an Electrostatic 2-axis MEMS Stage having Large Area Platform for Probe-based Storage Devices (대면적 플랫폼을 갖는 Probe-based Storage Device(PSD)용 정전형 2축 MEMS 스테이지의 설계)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.82-90
    • /
    • 2006
  • Recently the electrostatic 2-axis MEMS stages have been fabricated for the purpose of an application to PSD (Probe-based Storage Device). However, all of the components(platform, comb electrodes, springs, anchors, etc.) in those stages are placed in-plane so that they have low areal efficienceis, which is undesirable as data storage devices. In this paper, we present a novel structure of an electrostatic 2-axis MEMS stage that is characterized by having large area platform. for obtaining large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. The structure and operational principle of the MEMS stage are described, followed by a design procedure, structural and modal analyses using FEM(Finite Element Method). The areal efficiency of the MEMS stage was designed to be about 25%, which is very large compared with the conventional ones having a few percentage.

Design of an electrostatic 2-axis MEMS stage with large area platform (대면적 플랫폼을 갖는 정전형 2 축 MEMS 스테이지의 설계)

  • 정일진;전종업;백경록;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.373-378
    • /
    • 2004
  • Recently the electrostatic 2-axis MEMS stages have been fabricated for the purpose of an application to PSD (Probebased Storage Device). However, most of them have low area efficiency, which is undesirable as data storage devices, since all of the components (springs, comb electrodes, anchors, platform, etc.) are placed in-plane. In this paper, we present a novel structure of electrostatic 2-axis MEMS stage that is characterized by having large area platform. For large area efficiency, the actuator part consisting of mainly comb electrodes and springs is placed right below the platform. In this article, the structures and operational principle of the MEMS stages are described, followed by design procedure, structural and modal analysis using FEM(Finite Element Method). The area efficiency of the MEMS stage was designed to be about 55%, that is very large compared with conventional ones having a few percentage.

  • PDF

Deposition of Piezoelectric PZT(53/47) Film by Metalorganic Decomposition for Micro electro mechanical Device (Microelectromechnical system 소자 제작을 위한 유기금속분해법에 의한 압전성 PZT(53/47)박막의 증착)

  • 윤영수;정형진;신영화
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.458-464
    • /
    • 1998
  • This paper gives characterization of substrate and PZT(53/47) thin film deposited by metalorganic decomposition, which is concerned in deposition process and device fabrication process, to fabricate micro electro mechanical system (MEMS) device with piezoelectric material. The PZT thin films deposited by MOD at 700^{\circ}C$ for 30 minutes had a polycrystallinity, that is, no substrate dependence, while different interface were developed depending on the bottom electrodes. Such a structural variation could influence on not only the properties of the PZT film but also etching process for fabricating MEMS devices. Therefore the electrode structure is a very important factor in the deposition of the PZT film during etching process by HF acid for MEMS device with piezoelectric material. Piezoelectric coefficients of the PZT films on the different substrates were 40 and 80 pm/V at an applied voltage of 4V. Based in these results, it was possible for deposition of the PZT film by MOD to apply MEMS device fabrication process based on piezoelectricity after selection of proper bottom electrode.

  • PDF

Investigation on Hermeticity of Liquid Crystal Polymer Package for MEMS Based Safety Device (MEMS 기반 안전 소자에 대한 액정 폴리머 패키지의 밀폐도 연구)

  • Choi, Jinnil;Kim, Yong-Kook;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.287-290
    • /
    • 2015
  • Liquid crystal polymer (LCP) is a thermoplastic polymer with superior mechanical and thermal properties. In addition, its characteristics include very low water absorption rate and possibility to apply bonding process under low temperature. In this study, LCP is utilized as a packaging material for a microelectronic system (MEMS) based safety device with suggestion of a low temperature packaging process. Highly sensitive and stable capacitive type humidity sensor is fabricated to investigate hermeticity of the packaged MEMS device.

Vacuum Packaging of MEMS (Microelectromechanical System) Devices using LTCC (Low Temperature Co-fired Ceramic) Technology (LTCC 기술을 이용한 MEMS 소자 진공 패키징)

  • 전종인;최혜정;김광성;이영범;김무영;임채임;황건탁;문제도;최원재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • In the current electronic technology atmosphere, MEMS (Microelectromechanical System) technology is regarded as one of promising device manufacturing technologies to realize market-demanding device properties. In the packaging of MEMS devices, the packaged structure must maintain hermeticity to protect the devices from a hostile atmosphere during their operations. For such MEMS device vacuum packaging, we introduce the LTCC (Low temperature Cofired Ceramic) packaging technology, in which embedded passive components such as resistors, capacitors and inductors can be realized inside the package. The technology has also the advantages of the shortened length of inner and surface traces, reduced signal delay time due to the multilayer structure and cost reduction by more simplified packaging processes owing to the realization of embedded passives which in turn enhances the electrical performance and increases the reliability of the packages. In this paper, the leakage rate of the LTCC package having several interfaces was measured and the possibility of LTCC technology application to MEMS devices vacuum packaging was investigated and it was verified that improved hermetic sealing can be achieved for various model structures having different types of interfaces (leak rate: stacked via; $4.1{\pm}1.11{\times}10^{-12}$/ Torrl/sec, LTCC/AgPd/solder/Cu-tube; $3.4{\pm}0.33{\times}10^{-12}$/ Torrl/sec). In real application of the LTCC technology, the technology can be successfully applied to the vacuum packaging of the Infrared Sensor Array and the images of light-up lamp through the sensor way in LTCC package structure was presented.

  • PDF

A Study on Word Selection Method and Device Improvement for Improving Speech Recognition Rate of Speech-Language-impaired in Severe Noise Environment (심한 소음환경에서 언어장애인 음성 인식률 향상을 위한 단어선정 방법 및 장치 개선에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.555-567
    • /
    • 2019
  • Speech recognition rate is lowered even in a noisy environment, and it is difficult for a person with a speech disability or an inconvenient language to use it in a social life. In addition to improving the inconvenience of using the language, 280 words were selected using the word selection method which was improved when the word was selected considering the pronunciation characteristics of the language impaired. The MEMS development device used in the experiment was made considering material, lead wire type, length and direction. We improved the speech recognition rate by using the developed word selection method and the MEMS device developed to improve the speech recognition rate due to incorrect pronunciation and severe noise. The new method of selecting words and the mems device were improved and the results were included.

A Study on the Converter for MEMS Electrostatic Power Generator (MEMS 정전발전기 개발을 위한 변환소자연구)

  • Kang Hee-Jong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.2 s.344
    • /
    • pp.1-7
    • /
    • 2006
  • This is a preliminary study on the MEMS(Miro Electro Mechanical System) electrostatic power generator. It suggested a converting device to change from the electrostatic to the dynamic electricity. To testify, it used Silvaco simulation tools(Athena and Atlas) and fabricated the converting device. The result of the simulation and test it seems to convert electrostatic into dynamic electricity effectively.

Wafer Level Packaging of RF-MEMS Devices with Vertical feed-through (Ultra Thin 실리콘 웨이퍼를 이용한 RF-MEMS 소자의 웨이퍼 레벨 패키징)

  • 김용국;박윤권;김재경;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1237-1241
    • /
    • 2003
  • In this paper, we report a novel RF-MEMS packaging technology with lightweight, small size, and short electric path length. To achieve this goal, we used the ultra thin silicon substrate as a packaging substrate. The via holes lot vortical feed-through were fabricated on the thin silicon wafer by wet chemical processing. Then, via holes were filled and micro-bumps were fabricated by electroplating. The packaged RF device has a reflection loss under 22 〔㏈〕 and a insertion loss of -0.04∼-0.08 〔㏈〕. These measurements show that we could package the RF device without loss and interference by using the vertical feed-through. Specially, with the ultra thin silicon wafer we can realize of a device package that has low-cost, lightweight and small size. Also, we can extend a 3-D packaging structure by stacking assembled thin packages.

MEMS Design Flow Based on DFM Concept (DFM 개념을 적용한 MEMS design flow)

  • Han, Seung-Oh;Oh, Park-Kyoun;Silva, Mark da
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1466-1470
    • /
    • 2007
  • MEMS design flow based on DFM concept is presented and applied to gyroscope design as a test case. It is purposed to contribute to the yield improvement by considering the process-related parameters from the design phase. After defining the performance requirements, the sensitivity analysis should be done on the draft design(s) to find out the key parameters related with the device performance. By doing so, TEG can be designed for the selected process and/or material parameters. Through a set of test runs, the process capability is characterized and the material properties are extracted using the TEG. Then we can estimate the virtual yield of the current process for the designed device by running Monte Carlo analysis where the process and/or material property variations are considered. The estimated yield will make us redesign the device to be more robust or improve the current process to have the smaller variations.