• Title/Summary/Keyword: MEK2

Search Result 223, Processing Time 0.026 seconds

Artemisia capillaris Thunb. inhibits melanin synthesis activity via ERK-dependent MITF pathway in B16/F10 melanoma cells

  • Saba, Evelyn;Oh, Mi Ju;Lee, Yuan Yee;Kwak, Dongmi;Kim, Suk;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Genus Artemisia occurs as a hardy plant and has a wide range of culinary and medicinal features. In this study, we aimed to describe the melanin inhibitory activity of one Artemisia species, i.e., Artemisia capillaris Thunb. Ethanol extracts of fermented Artemisia capillaris (Art.EtOH.FT) and non-fermented Artemisia capillaris (Art.EtOH.CT) were tested for their ability to inhibit tyrosinase activity and melanin pigmentation. Both extracts showed dose-dependent inhibition against ${\alpha}$-melanocyte stimulating hormone-stimulated melanin formation and tyrosinase activity, without cytotoxicity. At $100{\mu}g/mL$, both extracts showed greater inhibition than kojic acid, the positive control. Protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) at the transcriptional level were determined by using real-time and semi-quantitative polymerase chain reaction. To complete the mechanistic study, presences of upstream elements of MITF, the phosphorylated-extracellular signal-regulated kinase (p-ERK), and phosphorylated-mitogen-activated protein kinase kinase (p-MEK) were confirmed by using western blot analysis. Expressions of p-TYR, p-TRP-1 and p-TRP-2, downstream factors for p-ERK and p-MITF, were translationally inhibited by both extracts. Art.EtOH.FT induced more potent effects than Art.EtOH.CT, especially signal transduction effects. In summary, Artemisia capillaris extracts appear to act as potent hypopigmentation agents.

Study on the Anti-inflammatory Effect and Mechanism of Prunus mume Extract Regarding NF-κB (NF-κB 조절을 통한 오매추출물의 항염효과 및 작용기작에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Lee, Dae-Woo;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • NF-${\kappa}B$ is a transcriptional factor which is involved in many biological processes including immunity, inflammation, and cell survival. Many investigators studied on the mechanism involved in activation of NF-${\kappa}B$ signalling pathway via ubiquitination and degradation of $I{\kappa}B$ regarding skin disease. Some specific molecules including Akt, MEK, p38 MAP Kinase, Stat3, et al. represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth and differentiation, energy homeostasis, and the response to stress and inflammation. Ultraviolet (UV) irradiation has many adverse effects on skin, including inflammation, alteration in the extracellular matrix, cellular senescence, apoptosis and skin cancer. Prunus mume, a naturally derived plant extract, has beneficial biological activities as blood fluidity improvement, anti-fatigue action, antioxidative and free radical scavenging activities, inhibiting the motility of Helicobacter pyolri. Previous reports on various beneficial function prompted us to investigate UVB-induced or other immunostimulated biological marker regarding P. mume extract. P. mume extract suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-${\kappa}B$ induced by UVB was dose-dependently inhibited by P. mume extract treatment. This results suggest that P. mume extracts might be used as a potential agents for protection of inflammation or UVB induced skin damage.

Enhancement of skin barrier and hydration-related molecules by protopanaxatriol in human keratinocytes

  • Lee, Jeong-Oog;Hwang, So-Hyeon;Shen, Ting;Kim, Ji Hye;You, Long;Hu, Weicheng;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.354-360
    • /
    • 2021
  • Background: Protopanaxatriol (PPT) is a secondary intestinal metabolite of ginsenoside in ginseng. Although the effects of PPT have been reported in various diseases including cancer, diabetes and inflammatory diseases, the skin protective effects of PPT are poorly understood. Methods: HaCaT cells were treated with PPT in a dose-dependent manner. mRNA and protein levels which related to skin barrier and hydration were detected compared with retinol. Luciferase assay was performed to explore the relative signaling pathway. Western blot was conducted to confirm these pathways and excavated further signals. Results: PPT enhanced the expression of filaggrin (FLG), transglutaminase (TGM)-1, claudin, occludin and hyaluronic acid synthase (HAS) -1, -2 and -3. The mRNA expression levels of FLG, TGM-1, HAS-1 and HAS-2 were suppressed under NF-κB inhibition. PPT significantly augmented NF-κB-luc activity and upregulated Src/AKT/NF-κB signaling. In addition, PPT also increased phosphorylation of the mitogen-activated protein kinases (MAPKs) ERK, JNK and p38 and upstream MAPK activators (MEK and MKK). Furthermore, transcriptional activity of AP-1 and CREB, which are downstream signaling targets of MAPK, was enhanced by PPT. Conclusion: PPT improves skin barrier function and hydration through Src/AKT/NF-κB and MAPK signaling. Therefore, PPT may be a valuable component for cosmetics or treating skin disorders.

Up-regulation of CD11c Expression on Human Acute Myelogenous Leukemia Cells by Flt-3 Ligand (인간 골수성 백혈병 세포에서 Flt-3 수용체 리간드에 의한 CD11c 발현의 증가)

  • Xu, Qi;Kwak, Jong-Young
    • Journal of Life Science
    • /
    • v.19 no.12
    • /
    • pp.1690-1697
    • /
    • 2009
  • CD11c and costimulatory molecules such as CD80 and CD86 express mainly in dendritic cells (DCs). In this study, we investigated the biologic effects of recombinant Fms-like tyrosine kinase-3 (Flt-3) ligand on the expression of DC surface markers, including CD11c in leukemia cell lines, such as KG-1, HL-60, NB4, and THP-1 cells. The expression of the Flt-3 receptor was found in NB4 and HL-60 cells, as well as KG-1 cells, but not in THP-1 cells. When KG-1 cells were cultured in a medium containing Flt-3 ligand or granulocyte macrophage-colony stimulating factor (GM-CSF) plus tumor necrosis factor (TNF)-$\alpha$, cell proliferation was inhibited and the expression levels of CD11c, major histocompatibility complex (MHC)-I, and MHC-II were increased in the cells. Flt-3 ligand also increased the expression level of CD11c on HL-60 and NB4 cells, but not on THP-1 cells. In comparison with CD11c expression, the expression level of CD11b on KG-1 cells, but not on NB4 and HL-60 cells, was slightly increased by Flt-3 ligand. Flt-3 ligand induced phosphorylation of extracellular signal-regulated kinase-1/2 (ERK-1/2) and p38-mitogen-activated protein kinase (p38-MAPK) in KG-1 cells, and the up-regulation of CD11c expression by Flt-3 ligand in the cells was abrogated by PD98059, an inhibitor of MEK. The results suggest that Flt-3 ligand up-regulates DC surface markers on $CD34^+$ myelomonocytic KG-1 cells, as well as promyelocytic leukemia cells, and that the differentiation of the leukemia cells into DC-like cells by Flt-3 ligand is mediated by ERK-1/2 activity.

Nitric Oxide Synthesis is Modulated by 1,25-Dihydroxyvitamin D3 and Interferon-${\gamma}$ in Human Macrophages after Mycobacterial Infection

  • Lee, Ji-Sook;Yang, Chul-Su;Shin, Dong-Min;Yuk, Jae-Min;Son, Ji-Woong;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.9 no.5
    • /
    • pp.192-202
    • /
    • 2009
  • Background: Little information is available the role of Nitric Oxide (NO) in host defenses during human tuberculosis (TB) infection. We investigated the modulating factor(s) affecting NO synthase (iNOS) induction in human macrophages. Methods: Both iNOS mRNA and protein that regulate the growth of mycobacteria were determined using reverase transcriptase-polymerase chain reaction and western blot analysis. The upstream signaling pathways were further investigated using iNOS specific inhibitors. Results: Here we show that combined treatment with 1,25-dihydroxyvitamin D3 (1,25-D3) and Interferon (IFN)-${\gamma}$ synergistically enhanced NO synthesis and iNOS expression induced by Mycobacterium tuberculosis (MTB) or by its purified protein derivatives in human monocyte-derived macrophages. Both the nuclear factor-${\kappa}B$ and MEK1-ERK1/2 pathways were indispensable in the induction of iNOS expression, as shown in toll like receptor 2 stimulation. Further, the combined treatment with 1,25-D3 and IFN-${\gamma}$ was more potent than either agent alone in the inhibition of intracellular MTB growth. Notably, this enhanced effect was not explained by increased expression of cathelicidin, a known antimycobacterial effector of 1,25-D3. Conclusion: These data support a key role of NO in host defenses against TB and identify novel modulating factors for iNOS induction in human macrophages.

Effect of Fructus Ligustri Lucidi $H_2O$ Extract on Cell Proliferation in Hman Dermal Fibroblast (여정실 물 분획물이 인체 진피 섬유아세포의 증식에 미치는 영향)

  • Lim, Nan-Young;Kim, Dae-Sung;Ko, Kyung-Sook;Mun, Yeun-Ja;Woo, Won-Hong
    • Korean Journal of Acupuncture
    • /
    • v.28 no.3
    • /
    • pp.43-51
    • /
    • 2011
  • Objectives : In this study, we investigated the effect of Fructus Ligustri Lucidi $H_2O$ fraction (FLLW) on cell proliferation, and the phosphorylation of ERKs and Akt in human dermal fibroblast neonatal (HDFn). Methods : After treatment of HDFn with FLLW, MTT assay was performed to quantitatively determine cellular viability. The ERK and Akt pathways were analyzed in vitro by Western blot in a HDFn. HDFn proliferation after FLLW and minoxidil treatment in the absence or presence of PD98059, a MEK inhibitor, LY294002, and a PI3K inhibitor, was examined by Western blot or MTT assay. Results : FLLW increased cell proliferation in a dose-dependent manner and minoxidil used as positive control also induced cell proliferation in HDFn. FLLW increased the phosphorylation of ERK and Akt. In addition, minoxidil, too, induced the phosphorylation of ERK and Akt in HDFn. PD98059 and LY294002 significantly attenuated FLLW-inducible p-ERK and p-Akt expression and proliferation in cultured HDFn. Conclusions : Our results suggest that FLLW stimulates the growth of fibroblast cells through ERK and Akt pathways. Therefore, FLLW is a potential agent for the inducer of fibroblast growth.

Design Standard of Activated Carbon Vessel for the Intermittent Emission Sources of Volatile Organic Compounds (휘발성 유기화합물의 간헐적 배출원에 대한 활성탄 흡착 시스템 설계기준)

  • Lee, Si-Hyun;Lim, Jeong-Whan;Rhim, Young-Jun;Kim, Sang-Do;Woo, Kwang-Je;Son, Mi-Sook;Park, Hee-Jae;Seo, Man-Cheol;Ryu, Seung-Kon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 2007
  • It was investigated that the emission characteristics of volatile organic compounds (VOCs) from small and medium companies located on industrial complexes in Metropolitan area. The emission characteristics are intermittent sources in which VOCs emissions are highly depends on the working condition. Optimized ventilation system to improve air quality in working area for the three typical companies were installed. Adsorption characteristics of major VOCs such as MEK, IPA, and toluene emitted front the companies were investigated for design of the activated carbon vessel as a VOCs control facility in each company. Concentration of total hydrocarbon and gas amounts needed to ventilation were also used as a design parameter. Mixed adsorbent to improve adsorption characteristics of problematic solvents like IPA and the design guideline of the activated carbon vessel have been suggested.

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

Tectoridin, a Poor Ligand of Estrogen Receptor α, Exerts Its Estrogenic Effects via an ERK-Dependent Pathway

  • Kang, Kyungsu;Lee, Saet Byoul;Jung, Sang Hoon;Cha, Kwang Hyun;Park, Woo Dong;Sohn, Young Chang;Nho, Chu Won
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.351-357
    • /
    • 2009
  • Phytoestrogens are the natural compounds isolated from plants, which are structurally similar to animal estrogen, $17{\beta}$-estradiol. Tectoridin, a major isoflavone isolated from the rhizome of Belamcanda chinensis. Tectoridin is known as a phytoestrogen, however, the molecular mechanisms underlying its estrogenic effect are remained unclear. In this study we investigated the estrogenic signaling triggered by tectoridin as compared to a famous phytoestrogen, genistein in MCF-7 human breast cancer cells. Tectoridin scarcely binds to ER ${\alpha}$ as compared to $17{\beta}$-estradiol and genistein. Despite poor binding to ER ${\alpha}$, tectoridin induced potent estrogenic effects, namely recovery of the population of cells in the S-phase after serum starvation, transactivation of the estrogen response element, and induction of MCF-7 cell proliferation. The tectoridin-induced estrogenic effect was severely abrogated by treatment with U0126, a specific MEK1/2 inhibitor. Tectoridin promoted phosphorylation of ERK1/2, but did not affect phosphorylation of ER ${\alpha}$ at $Ser^{118}$. It also increased cellular accumulation of cAMP, a hallmark of GPR30-mediated estrogen signaling. These data imply that tectoridin exerts its estrogenic effect mainly via the GPR30 and ERK-mediated rapid nongenomic estrogen signaling pathway. This property of tectoridin sets it aside from genistein where it exerts the estrogenic effects via both an ER-dependent genomic pathway and a GPR30-dependent nongenomic pathway.

Increased Sensitivity of ras-transformed Cells to Capsaicin-induced Apoptosis

  • Kang, Hye-Jung;Yunjo Soh;Kim, Mi-Sung;Lee, Eun-Jung;Surh, Young-Joon;Kim, Seung-Hee;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.107-107
    • /
    • 2001
  • During the last decade, enormous progress has been made on the biological significance of apoptosis. Since ras is among the most central molecule in signaling, we asked if ras regulates apoptotic pathway. We have previously shown that H-ras, but not N-ras, induces an invasiveness and motility in human breast epithelial cells (MCF10A), while both H-ras and N-ras induce transformed phenotype. In this study, we wished to seek a chemopreventive agent that effectively induces apoptosis in H-ras-activated cells. Here we show that capsaicin, the major pungent phytochemical in red pepper, induces caspase 3-involved apoptosis selectively in H-ras activated MCF10A cells while the parental MCF10A cells are not effected. In order to study the molecular mechanisms for the increased sensitivity of H-ras MCF10A cells to capsaicin-induced apoptosis, activation of ras downstream signaling molecules, mitogen-activated protein kinases (MAPKinases), upon capsaicin treatment was investigated. Phosphorylated forms of JNK1 and p38 MAPKinase were prominently increased whereas activated ERK-1/2 was decreased by capsaicin in ras-activated cells. The parental cells did not respond to capsaicin, suggesting that capsaicin selectively induces apoptosis through modulating activities of ras downstream signaling molecules in H-ras-activated cells. Studies using chemical inhibitors (CPT-cAMP, SB203580 and PD98059) and dominant negative constructs of JNKl, p38 and MEK show that activation of JNK1 and p38 MAPKinase, but not ERK-1/2, is critical for ras-mediated apoptosis by capsaicin.

  • PDF