• Title/Summary/Keyword: MEAN SHIFT

Search Result 645, Processing Time 0.033 seconds

Retouching Method for Watercolor Painting Style Using Mean Shift Segmentation (Mean Shift Segmentation을 이용한 수채화 스타일 변환 기법)

  • Lee, Sang-Geol;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.433-434
    • /
    • 2010
  • 본 논문에서는 영상처리에서 많이 사용하는 bilateral filtering과 mean shift segmentation을 이용하여 일반적인 사진을 수채화 스타일로 변환하는 기법에 대하여 제안한다. 먼저 bilateral filtering을 이용하여 사진의 외곽선 부분은 보존하면서 고주파 성분을 약화시키도록 한다. 그리고 bilateral filtering된 영상에서 mean shift segmentation을 수행하여 수채화 스타일의 영상을 생성한다. 본 논문에서 제안하는 기법으로 다양한 사진에 대하여 실험한 결과 수채화 스타일로 잘 변화되는 것을 확인하였으며 특히 주광에서 촬영한 풍경 사진들에 대하여 보다 우수한 성능을 보임을 확인하였다.

  • PDF

Tracking Object with Radical Color Changes Using Rectified Mean Shift (개선된 Mean Shift를 이용한 급격한 컬러 변화 물체 추적)

  • Whang, In-Teck;Choi, Kwang-Nam
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.137-140
    • /
    • 2006
  • 본 논문은 급격한 컬러 변화를 보이는 물체를 추적하기 위해 새로운 알고리즘에 대해서 기술하였다. 이를 수행하기 위해 컬러기반의 추적 알고리즘인 Mean Shift를 개선하여 적용한다. 지존의 Mean Shift 알고리즘은 물체 추적을 위해 컬러 분포 정보를 설정한다. 하지만 초기의 컬러 분포 정보가 사라질 경우 물체 추적을 정확히 수행하기 힘들다는 문제점을 안고 있다. 본 논문에서는 이를 해결하기 위해 Mean Shift를 개선하여, 추적 대상의 컬러 정보를 반복적으로 업데이트하여 초기의 컬러 정보가 사라지더라도 추적이 가능하도록 개선하였다. 개선된 추적 알고리즘은 시간에 따라 초기의 컬러 분포 정보가 완전히 사라지더라도 실시간 추적이 가능하도록 구현하였다. 이를 입증하기 위해 본 논문의 실험에서는 실험적인 환경에서 급격한 컬러 변화를 보이는 간단한 문제의 추적과 실생활에서의 예를 함께 보여준다.

  • PDF

Wine Label Detection Using Saliency Map and Mean Shift Algorithm (중요도 맵과 Mean Shift 알고리즘을 이용한 와인 라벨 검출)

  • Chen, Yan-Juan;Lee, Myung-Eun;Kim, Soo-Hyung
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.384-385
    • /
    • 2011
  • 본 논문은 중요도 맵과 Mean Shift 알고리즘을 이용하여 모바일 폰 영상 내의 와인 라벨 검출 방법을 제안한다. Mean Shift 알고리즘은 비모수적 클러스터링 기술로 클러스터의 수에 대한 사전 지식이 없이도 클러스터링이 가능한 알고리즘인데 실행 시간이 많이 필요한 단점이 있다. 이러한 문제를 해결하기 위해서 입력 칼라 와인 영상에 Saliency Map을 먼저 적용하고 영상의 두드러진 영역을 찾는다. 다음으로 Mean Shift 알고리즘을 이용한 분할 결과에서 얻은 칼라 마스크를 따라 빈도가 가장 높은 칼라 영역을 찾고 와인 라벨 영역을 검출한다. 실험결과를 통하여 제안된 방법을 모바일 폰을 이용하여 획득된 다양한 와인 영상의 라벨 영역을 효율적으로 검출할 수 있음을 볼 수 있다.

Determination of the Resetting Time to the Process Mean Shift by the Loss Function (손실함수를 적용한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.165-172
    • /
    • 2017
  • Machines are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. Under the process mean shift, production cost, failure cost and quality loss function cost are increasing continuously. Therefore a periodic preventive resetting the process is necessary. We suppose that the wear level is observable. In this case, process mean shift problem has similar characteristics to the maintenance policy model. In the previous studies, process mean shift problem has been studied in several fields such as 'Tool wear limit', 'Canning Process' and 'Quality Loss Function' separately or partially integrated form. This paper proposes an integrated cost model which involves production cost by the material, failure cost by the nonconforming items, quality loss function cost by the deviation between the quality characteristics from the target value and resetting the process cost. We expand this process mean shift problem a little more by dealing the process variance as a function, not a constant value. We suggested a multiplier function model to the process variance according to the analysis result with practical data. We adopted two-side specification to our model. The initial process mean is generally set somewhat above the lower specification. The objective function is total integrated costs per unit wear and independent variables are wear limit and initial setting process mean. The optimum is derived from numerical analysis because the integral form of the objective function is not possible. A numerical example is presented.

The Change of Sleep Quality after Transition to Consecutive Day Shift from Day and Night Shift: A Motor Assembly Factory Case (주야2교대제에서 주간연속2교대제로의 전환 후 수면의 질 변화 : 일개 완성차 제조사의 사례)

  • Song, Hansoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.4
    • /
    • pp.566-572
    • /
    • 2015
  • Objectives: The major objective of this study was to analyze insomnia after the change to consecutive day shift from day and night shift in a motor assembly factory. Materials: Data were collected at before and after shift system change through a survey conducted by a labor union. We analyzed transition of PSQI(Pittsburgh Sleep Quality Index) among 222 workers by separating the day shift week and night shift week. The cut-off point of insomnia was 8.5 on the PSQI. Results: Mean PSQI in the day shift week significantly did not decrease, going from $6.36{\pm}3.23$ to $6.46{\pm}3.00$(p=0.612 by paired t-test), Mean PSQI for night shift week significantly decreased from $8.31{\pm}3.36$ to $6.19{\pm}3.18$(p<0.001 by paired t-test). However, mean PSQI in the day shift week increased from $6.33{\pm}3.83$ to $7.11{\pm}2.86$ in ${\geq}50$ years(p=0.085, by repeated measured ANOVA). Mean PSQI score in the night shift week improved more in the married group(from $8.38{\pm}3.27$ to $6.12{\pm}3.18$) than in the non-married group(from $7.82{\pm}3.27$ to $6.12{\pm}3.18$)(p=0.038, by repeated measured ANOVA). Conclusions: The change to consecutive day shift improved insomnia in night shift. However, insomnia in the day shift week was worsened among those more than 50 years old.

Multiple Human Tracking using Mean Shift and Depth Map with a Moving Stereo Camera (카메라 이동환경에서 mean shift와 깊이 지도를 결합한 다수 인체 추적)

  • Kim, Kwang-Soo;Hong, Soo-Youn;Kwak, Soo-Yeong;Ahn, Jung-Ho;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.937-944
    • /
    • 2007
  • In this paper, we propose multiple human tracking with an moving stereo camera. The tracking process is based on mean shift algorithm which is using color information of the target. Color based tracking approach is invariant to translation and rotation of the target but, it has several problems. Because of mean shift uses color distribution, it is sensitive to color distribution of background and targets. In order to solve this problem, we combine color and depth information of target. Also, we build human body part model to handle occlusions and we have created adaptive box scale. As a result, the proposed method is simple and efficient to track multiple humans in real time.

The Estimation of Hand Pose Based on Mean-Shift Tracking Using the Fusion of Color and Depth Information for Marker-less Augmented Reality (비마커 증강현실을 위한 색상 및 깊이 정보를 융합한 Mean-Shift 추적 기반 손 자세의 추정)

  • Lee, Sun-Hyoung;Hahn, Hern-Soo;Han, Young-Joon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.155-166
    • /
    • 2012
  • This paper proposes a new method of estimating the hand pose through the Mean-Shift tracking algorithm using the fusion of color and depth information for marker-less augmented reality. On marker-less augmented reality, the most of previous studies detect the hand region using the skin color from simple experimental background. Because finger features should be detected on the hand, the hand pose that can be measured from cameras is restricted considerably. However, the proposed method can easily detect the hand pose from complex background through the new Mean-Shift tracking method using the fusion of the color and depth information from 3D sensor. The proposed method of estimating the hand pose uses the gravity point and two random points on the hand without largely constraints. The proposed Mean-Shift tracking method has about 50 pixels error less than general tracking method just using color value. The augmented reality experiment of the proposed method shows results of its performance being as good as marker based one on the complex background.

Optimal Design of a EWMA Chart to Monitor the Normal Process Mean

  • Lee, Jae-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.465-470
    • /
    • 2012
  • EWMA(exponentially weighted moving average) charts and CUSUM(cumulative sum) charts are very effective to detect small shifts in the process mean. These charts have some control-chart parameters that allow the charts and be tuned and be more sensitive to certain shifts. The EWMA chart requires users to specify the value of a smoothing parameter, which can also be designed for the size of the mean shift. However, the size of the mean shift that occurs in applications is usually unknown and EWMA charts can perform poorly when the actual size of the mean shift is significantly different from the assumed size. In this paper, we propose the design procedure to find the optimal smoothing parameter of the EWMA chart when the size of the mean shift is unknown.

Target Modeling with Color Arrangement for Region-Based Object Tracking (영역 기반 물체 추적에서 색상 배치를 고려한 표적 모델링)

  • Kim, Dae-Hwan;Lee, Seung-Jun;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • In this paper, we propose a new class of color histogram model suitable for object tracking. In addition to the pixel count, each bin of the proposed model also contains the spatial mean and the average value of the pixels located at a certain distance from the mean location of the bin. Using the proposed color histogram model, we derive a mean shift procedure using the modified Bhattacharyya distance. Unlike most mean shift based methods, our algorithm performs well even when the object being tracked shares similar colors with the background. Experimental results demonstrate improved tracking performance over existing methods.

Smartphone Based Retouching Method for Watercolor Painting Effect Using Mean Shift Segmentation (Mean Shift Segmentation을 이용한 스마트폰 기반의 수채화 효과 변환 기법)

  • Lee, Sang-Geol;Kim, Cheol-Ki;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2413-2418
    • /
    • 2010
  • We propose a retouching method that converts a photography taken by smartphone to a watercolor painting image using bilateral filtering and mean shift segmentation which are mostly used in image processing. The first step is to convert an input image to fit the screen resolution of smartphone. And next step is to weaken high frequency components of the image, while preserving the edge of image using the bilateral filtering. And after that we perform mean shift segmentation from the bilateral filtered image. We apply parameters of mean shift segmentation considering the processing speed of smartphone. Experimental result shows that our method can be applied to various types of image and bring better result.