• Title/Summary/Keyword: MEA Process

Search Result 102, Processing Time 0.029 seconds

26GHz 40nm CMOS Wideband Variable Gain Amplifier Design for Automotive Radar (차량용 레이더를 위한 26GHz 40nm CMOS 광대역 가변 이득 증폭기 설계)

  • Choi, Han-Woong;Choi, Sun-Kyu;Lee, Eun-Gyu;Lee, Jae-Eun;Lim, Jeong-Taek;Lee, Kyeong-Kyeok;Song, Jae-Hyeok;Kim, Sang-Hyo;Kim, Choul-Young
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.408-412
    • /
    • 2018
  • In this paper, a 26GHz variable gain amplifier fabricated using a 40nm CMOS process is studied. In the case of an automobile radar using 79 GHz, it is advantageous in designing and driving to drive down to a low frequency band or to use a low frequency band before up conversion rather than designing and matching the entire circuit to 79 GHz in terms of frequency characteristics. In the case of a Phased Array System that uses time delay through TTD (True Time Delay) in practice, down conversion to a lower frequency is advantageous in realizing a real time delay and reducing errors. For a VGA (Variable Gain Amplifier) operating in the 26GHz frequency band that is 1/3 of the frequency of 79GHz, VDD : 1V, Bias 0.95V, S11 is designed to be <-9.8dB (Mea. High gain mode) and S22 < (Mea. high gain mode), Gain: 2.69dB (Mea. high gain mode), and P1dB: -15 dBm (Mea. high gain mode). In low gain mode, S11 is <-3.3dB (Mea. Low gain mode), S22 <-8.6dB (Mea. low gain mode), Gain: 0dB (Mea. low gain mode), P1dB: -21dBm (Mea. Low gain mode).

Design Factors of Membrane Electrode Assembly for Direct Methanol Fuel Cells. (직접 메탄올 연료전지용 막-전극 접합체의 설계 인자에 관한 연구)

  • Cho, Jae-Hyung;Hwang, Sang-Youp; Kim, Soo-Kil;Ahn, Dong-June;Lim, Tae-Hoon;Ha, Heung-Yong
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.293-299
    • /
    • 2007
  • Direct coating of catalyst layer on the $Nafion^{(R)}$ membrane has been optimized in the process of fabrication of membrane electrode assembly (MEA) to enhance the performance of direct methanol fuel cell (DMFC). In this method, the contact resistance at the interface of the catalyst layer and the membrane was found to be low. The effect of catalyst loading, thickness of membrane and the gas diffusion layer (GDL) with or without the presence of micro-porous layer (MPL) on the performance of the MEA was also investigated. The MEA fabricated by the above-mentioned method exhibited a performance of $147\;mW/cm^2$ and $100\;mW/cm^2$ at $80^{\circ}C$ and $60^{\circ}C$, respectively, with the catalysts loading of $4\;mg/cm^2$.

  • PDF

Study on preparation of precipitated calcium carbonate using recycling water of ready-mixed Concrete (레미콘 회수수를 이용한 침강성 탄산칼슘 제조에 관한 연구)

  • Shin, Jae Ran;Kim, Jae Gang;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.232-238
    • /
    • 2016
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. Also a shuttle mechanism of wet chemical absorption using MEA was utilized. The high concentration $CO_2$(A) and exhaust gas(B) was used for collecting carbon dioxide in the 30% MEA aqueous solution, and $CO_2$ was fixed with rate of 0.35 mg of $CO_2$ per mg of sludge through the liquid carbonation process. It was found from SEM data that calcium carbonate was mainly made up with spherical vaerite with the mixing of a small quantity of calcite.

Polymer/Metal Based Flexible MEMS Biosensors for Nerve Signal Monitoring and Sensitive Skin

  • Kim, Yong-Ho;Hwang, Eun-Soo;Kim, Yong-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • This paper presents fabrication process and experimental results of two different types of flexible MEMS biosensors based on polymer/metal multilayer processing techniques. One type of a biosensor is a microelectrode array (MEA) for nerve signal monitoring through implanting the MEA into a living body, and another is a tactile sensor capable of being mounted on an arbitrary-shaped surface. The microelectrode array was fabricated and its electrical characteristics have been examined through in vivo and in vitro experiment. For sensitive skin, flexible tactile sensor array was fabricated and its sensitivity has been analyzed. Mechanical flexibility of these biosensors has been achieved by using a polymer, and it is verified by implanting a MEA to an animal and mounting the tactile sensor on an arbitrary-shaped surface.

Effects of Additives and Hot-Pressing Conditions on the Surface and Performance of MEAs for PEMFCs (첨가제를 이용한 촉매슬러리 조성 안정화 및 열-압착 공정 최적화 통한 PEMFC용 MEA 개발)

  • Jang, Hyun-Sook;Cho, Eun-Ae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.398-404
    • /
    • 2010
  • Process conditions for MEA fabrications have significant effects on properties and performance of the MEAs for PEMFCs. In this study, effects of additives on the surface properties of the MEA was investigated to improve homogeneity of the coated catalyst layer. Another parameter that affects on characteristics of the MEAs is hot-pressing condition. Hot pressing condition was optimized by using DOE (design of experiment) method.

Synthesis and Durability of Carbon-Supported Catalysts for PEMFC (내구성 향상을 위한 연료전지 촉매 개발)

  • YI, MI HYE;CHOI, JIN SUNG;RHO, BUMWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.318-323
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to improve durability of MEA and electrocatalysts. Regarding electrocatalysts, the major issue is to reduce carbon corrosion and dissolution of Pt caused by harsh conditions, for example, SU/SD (Start-up/Shut-down). In this research, OER (Oxygen Evolution Reaction) catalyst has been developed improvement of durability. A modified polyol process is developed by controlling the pH of the solvent to synthesize the PtIr nanocatalysts on carbon supports. Each performance of the MEAs applying PtIr and Pt are equivalent because PtIrnanocatalysts have both ORR and OER activity. Breadboard test for catalyst durability in harsh conditions and high potentialsis found that the MEA applying PtIrnanocatalysts durability is improved more than the MEA applying Pt nanocatalysts.

A Study on Unit Cell Design for the Performance Enhancement in PEMFC System (PEMFC 시스템의 성능향상을 위한 단위전지 설계에 관한 연구)

  • Kim Hong-Gun;Kim Yoo-Shin;Yang Sung-Mo;Nah Seok-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.104-109
    • /
    • 2005
  • The catalyst layer design is one of the most important factors to enhance the performance of PEMFC(Proton Exchange Membrane Fuel Cell) system. The hydrophobic and ion conductive type is studied for the MEA(Membrane Electrolyte Assembly). It is found that those have some limitations for performance enhancement when they are used separately. Thus, the dual catalyst type, a mixed model, is developed for the better MEA performance. In the meantime, the design of flow field plate is subsequently carried out in order to give more enhanced output during its operation. The conductivity of flow field plate showed better performance in the case of manufactured by the more compressed process(20MPa) than by the less compressed process(10MPa). The micro-structure of the flow field plate is examined in details using SEM(Scanning Electron Microscope) to analyse the effects on the different compression processes.

Analysis of Amine Absorbents Volatility Based on the Chemical Structure (아민 흡수제의 화학구조에 따른 휘발 특성)

  • Lee, Kyung Ja;Lee, Ji Hyun;Kwak, No Sang;Lee, In Young;Kim, Jun Han;Eom, Yong Seok;Jang, Kyung Ryoung;Shim, Jae Goo;Lee, Yongtaek
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.348-352
    • /
    • 2012
  • Amine volatility occurring on the $CO_2$ capture process may result in significant economic losses and environmental impact. In this study, using an volatility measurement apparatus, we measured a amine volatility of various amines including MEA(Monoethanolamine), MDEA(N-Methyldiethanolamine), Pz(Piperazine), AMP(2-Amino-2-methyl-1-propanol), 2-MP(2-Methylpiperazine), DGA(Diglycolamine). For the quantitative analysis of volatility, we analyzed the effects of temperature and $CO_2$ loading using an gas chromatography analysis. The result shows that the amine volatility was increased by increasing Henry's constant(MDEA$-CH_3$)(for AMP).

Development and Application of MEA(Model-Eliciting Activities) Program Applying the Invention Technique(TRIZ): Focus on Students' Conceptual Change (발명기법(TRIZ)을 적용한 MEA(Model-Eliciting Activities) 프로그램 개발 및 적용 -학생들의 개념 변화를 중심으로-)

  • Kang, Eunju
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.1
    • /
    • pp.161-176
    • /
    • 2022
  • This study developed an MEA program to which the invention technique was applied and analyzed the conceptual change of students. The MEA activity applying the invention technique (TRIZ) was composed of the topic of making a paper electric circuit in the section 'Using electricity' presented in the 6th grade textbook. As a way to materialize ideas for problem solving, among the TRIZ techniques, division, integration, multi-purpose, overlapping, subtraction, and converse techniques were extracted and applied. The devised program consists of examining invention techniques (1st session), problem-solving (2nd and 3rd sessions), and expressing the problem-solving process (4th session). As a result of applying to 6th grade elementary school students, it was confirmed that the scientific concept of the experimental group participating in the MEA class to which the invention technique was applied was improved compared to the control group participating in the general class. As a result of calculating the scientific concept improvement index, the control group showed a low educational effect of 0.15, and the experimental group showed an intermediate educational effect of 0.69. This study is meaningful in that it suggests a specific way to graft invention education into science subjects.

Effect of Carbonic Anhydrase on CO2 Absorption in Amine Solutions for CO2 Capture (CO2 포집용 아민 흡수제에서 탄산무수화 효소가 CO2 흡수에 미치는 영향)

  • Lee, In-Young;Kwak, No-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.607-612
    • /
    • 2017
  • The effect of carbonic anhydrase on $CO_2$ absorption rates and the heat of reaction were evaluated in various amine solutions for post combustion $CO_2$ capture process. The $CO_2$ absorption rate was analyzed in 30 wt% MEA, AMP, DMEA, MDEA aqueous solutions with and without carbonic anhydrase (250 mg/L) from bovine erythrocyte. $CO_2$ absorption rates were increased in all solutions with carbonic anhydrase. The effect of carbonic anhydrase on absorption rates was more in tertiary amine (DMEA and MDEA) solutions than in primary amine (MEA) and hindered amine (AMP) solutions. The heat of reaction of MEA, DMEA, MDEA aqueous solutions with and without carbonic anhydrase were measured using reaction calorimeter. Carbonic anhydrase decreased the heat of absorption in all solutions. The results suggested that tertiary amines that have the excellent desorption ability were suitable for applying carbonic anhydrase to the post combustion $CO_2$ capture process and the effect of carbonic anhydrase was best in MDEA solution.