• Title/Summary/Keyword: MDR3

Search Result 199, Processing Time 0.027 seconds

Multidrug-resistance Reversing Activity of Medicinal Plants (약용 식물의 암세포 다제내성 조절 활성 검색)

  • Kim, Se-Eun;Hwang, Bang-Yeon;Kim, Young-Ho;Kim, Young-Choong;Lee, Kyong-Soon;Lee, Jung-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.174-178
    • /
    • 1997
  • Methanol extracts from 450 plants were screened for muttidrug-resistance reversing activity using drug sensitive KB-3-1 and multidrug-resistant KB-Vl cells. Among them, the extracts of Cynanchum wilfordii, Torilis japonica, Celastrus orbiculatus, Melia toosendan and Teminialia chebula strongly potentiated vinblastine cytotoxicity in KB-Vl cells. But their cytotoxicities to both sensitive KB-3-1 and resistant KB-Vl cells were in the same order of magnitude. These results indicate that the above samples would contain the active principles which do not exert their ativity solely by cytotoxicity.

  • PDF

Inhibition of Drug-metabolizing Enzyme and Drug Transporter by Major Components of Phellodendri cortex (황백의 주요 구성 화합물에 의한 약물대사효소 및 약물수송단백 저해능 평가)

  • Ku, Hei-Young;Kim, Hyunmi;Shon, Ji-Hong;Liu, Kwang-Hyeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.213-217
    • /
    • 2006
  • We evaluated the potential of major components of Phellodendri cortex to inhibit the activities of CYP2D6 and p-glycoprotein. The abilities of berberine, palmatine, limonin, and rutaecarpine to inhibit CYP2D6-mediated dextromethorphan O-demethylation and calcein AM accumulation were tested using human liver microsomes and L-MDR1 cell, respectively. Berberine strongly inhibited CYP2D6 isoform activity, whereas limonin and reuaecarpine did not. The $IC_{50}$ value of berberine was reduced after preincubation with microsomes in the presence of NADPH generating system, suggesting that berberine is a mechanism based inhibitor. In addition, all chemicals tested, didn't show inhibitory effect on p-glycoprotein activity. These results suggest that berberine has potential to inhibit CYP2D6 activity in vitro. Therefore, in vivo studies investigating the interactions between berberine and CYP2D6 substrates are necessary to determine whether inhibition of CYP2D6 activity by berberine is clinically relevant.

  • PDF

Characteristics, Management, and Clinical Outcomes of Patients with Hospital-Acquired and Ventilator-Associated Pneumonia: A Multicenter Cohort Study in Korea

  • Ko, Ryoung-Eun;Min, Kyung Hoon;Hong, Sang-Bum;Baek, Ae-Rin;Lee, Hyun-Kyung;Cho, Woo Hyun;Kim, Changhwan;Chang, Youjin;Lee, Sung-Soon;Oh, Jee Youn;Lee, Heung Bum;Bae, Soohyun;Moon, Jae Young;Yoo, Kwang Ha;Jeon, Kyeongman
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.4
    • /
    • pp.317-325
    • /
    • 2021
  • Background: Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) are significant public health issues in the world, but the epidemiological data pertaining to HAP/VAP is limited in Korea. The objective of this study was to investigate the characteristics, management, and clinical outcomes of HAP/VAP in Korea. Methods: This study is a multicenter retrospective cohort study. In total, 206,372 adult patients, who were hospitalized at one of the 13 participating tertiary hospitals in Korea, were screened for eligibility during the six-month study period. Among them, we included patients who were diagnosed with HAP/VAP based on the Infectious Diseases Society of America (IDSA)/American Thoracic Society (ATS) definition for HAP/VAP. Results: Using the IDSA/ATS diagnostic criteria, 526 patients were identified as HAP/VAP patients. Among them, 27.9% were diagnosed at the intensive care unit (ICU). The cohort of patients had a median age of 71.0 (range from 62.0 to 79.0) years. Most of the patients had a high risk of aspiration (63.3%). The pathogen involved was identified in 211 patients (40.1%). Furthermore, multidrug resistant (MDR) pathogens were isolated in 138 patients; the most common MDR pathogen was Acinetobacter baumannii. During hospitalization, 107 patients with HAP (28.2%) had to be admitted to the ICU for additional care. The hospital mortality rate was 28.1% in the cohort of this study. Among the 378 patients who survived, 54.2% were discharged and sent back home, while 45.8% were transferred to other hospitals or facilities. Conclusion: This study found that the prevalence of HAP/VAP in adult hospitalized patients in Korea was 2.54/1,000 patients. In tertiary hospitals in Korea, patients with HAP/VAP were elderly and had a risk of aspiration, so they were often referred to step-down centers.

The Proportion of Rifabutin-susceptible Strains among Rifampicin-resistant Isolates and Its Specific rpoB Mutations (한국에서 분리된 리팜핀 내성 균주에서의 리파부틴 감수성 정도 및 관련 rpoB 유전자 돌연변이의 특성에 관한 연구)

  • Lew, Woo Jin;Park, Young Kil;Kim, Hee Jin;Chang, Chulhun;Bai, Gill Han;Kim, Sung Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.3
    • /
    • pp.257-265
    • /
    • 2005
  • Background : Rifabutin (ansamycin) is a spiro-piperidyl rifamycin, which is highly active against Mycobacterium tuberculosis. It has been found that some clinical isolates of tubercle bacilli that are resistant to rifampicin are susceptible to rifabutin, with some patients with multi-drug resistant pulmonary tuberculosis having shown favorable clinical and bacteriological responses to the rifabutin. This study was conducted to find the proportion of rifabutin-susceptible strains among rifampicin-resistant isolates from Korean MDR-TB patients, and investigate the presence of specific rpoB mutations, which may confer resistance to rifampicin, but not to rifabutin. Methods : 201 rifampicin-resistant and 50 pan-susceptible M. tuberculosis isolates were randomly selected for this study. The isolates were retested at rifampicin and rifabutin concentrations of 0, 20, 40 and $80{\mu}g/ml$, respectively. The isolates that grew at and/or over a rifabutin concentration of $20{\mu}g/ml$ were judged rifabutin-resistant. The rpoB gene was extracted from the isolates, and then amplified for direct sequencing to investigate specific rpoB mutations that conferred rifabutin- susceptibility but rifampicin-resistance. Results : Out of the 201 rifampicin-resistant M. tuberculosis, 41 strains (20.4%) were susceptible to rifabutin using the absolute concentration method on Lowenstein-Jensen media. The rpoB mutation types that showed susceptibility to rifabutin were Leu511Pro, Ser512Arg, Gln513Glu, Asp516Ala, Asp516Gly, Asp516Val, Asp516Tyr, Ser522Leu, His526Asn, His526Leu, His526Cys, Arg529Pro and Leu533Pro. A reverse hybridization technique was able to detect 92.5% of the rifabutin-susceptible isolates, with a specificity of 96.1% among 195 M. tuberculosis isolates with the rpoB mutation. Conclusions : Around 20% of the rifampicin-resistant isolates in Korea showed susceptibility to rifabutin, which was associated with some specific mutations of rpoB. Rifabutin could be used for the treatment of MDR-TB patients, especially when drug susceptibility testing reveals susceptibility to rifabutin.

LncRNA MEG3 Regulates Imatinib Resistance in Chronic Myeloid Leukemia via Suppressing MicroRNA-21

  • Zhou, Xiangyu;Yuan, Ping;Liu, Qi;Liu, Zhiqiang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.490-496
    • /
    • 2017
  • Imatinib resistance has become a major clinical problem for chronic myeloid leukemia. The aim of the present study was to investigate the involvement of MEG3, a lncRNA, in imatinib resistance and demonstrate its underlying mechanisms. RNAs were extracted from CML patients' peripheral blood cells and human leukemic K562 cells, and the expression of MEG3 was measured by RT-qPCR. Cell proliferation and cell apoptosis were evaluated. Western blotting was used to measure the protein expression of several multidrug resistant transporters. Luciferase reporter assay was performed to determine the binding between MEG3 and miR-21. Our results showed that MEG3 was significantly decreased in imatinib-resistant CML patients and imatinib-resistant K562 cells. Overexpression of MEG3 in imatinib-resistant K562 cells markedly decreased cell proliferation, increased cell apoptosis, reversed imatinib resistance, and reduced the expression of MRP1, MDR1, and ABCG2. Interestingly, MEG3 binds to miR-21. MEG3 and miR-21 were negatively correlated in CML patients. In addition, miR-21 mimics reversed the phenotype of MEG3-overexpression in imatinib-resistant K562 cells. Taken together, MEG3 is involved in imatinib resistance in CML and possibly contributes to imatinib resistance through regulating miR-21, and subsequent cell proliferation, apoptosis and expression of multidrug resistant transporters.

Effect of ${\alpha}$-Glycosidase Inhibitor in Multidrug Resistant Cell Lines

  • Paek, Nam-Soo;Namgung, Jun;Lee, Jung-Joon;Choi, Yong-Jin;Kim, Tae-Han;Kim, Kee-Won
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.269-273
    • /
    • 1998
  • The objective of this study was to evaluate the reversal of multi drug resistance of human cell lines by specific inhibitors of ${\alpha}-glycosidase$ and mannosidases that had been reported to be involved in N-linked oligosaccharide processing of glycoproteins. N-methyldeoxynojirimycin, I-deoxynojirimycin, and castanospermine, which were known to be potent inhibitors of both ${\alpha}-glycosidase$ I and II, showed no activity against the multidrug resistant phenotype of the cell lines of SNU1DOX, KB-V1, and MCF-7/ADR. In contrast, I-deoxymannojirimycin, an inhibitor of mannosidase I, resulted in a slight reversal for the vinblastine resistance of the KB-V1 cell line, but did not show any activity toward the other cell lines. Parallel experiments with tunicamycin, an inhibitor of N-linked glycosylation, also resulted in no significant changes in multidrug resistant (MDR) phenotype of the cell lines tested in this work. These observations suggest that the unglycosylation of P-glycoprotein associated with the inhibitor treatments might not be correlated with the reversal of multidrug resistance of the cell lines tested in this study.

  • PDF

Antimicrobial Resistance and Multi-Drug Resistance Patterns of Pathogenic Bacteria Isolated from Food Poisoning Patients in Incheon (인천지역 식중독 환자에서 분리한 병원성 세균의 항생제 내성 및 다제 내성 양상)

  • Huh, Myung-Je;Oh, Sung-Suck;Jang, Jae-Seon
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.132-136
    • /
    • 2013
  • Antimicrobial resistance and multi-drug resistance patterns have been carried out on total of 210 isolated of Salmonella spp. and pathogenic E. coli isolated from food poisoning patients on January through December 2012 in Incheon, Korea. The highest percentage of antibiotics resistance was found to the following antimicrobial agents: tetracycline 43.8%, ampicillin 34.8%, nalidixic acid 23.8%, sulfamethoxazole/trimethoprim and chloramphenicol 12.4%, and ampicillin/sulbactam 11.4%. The highest percentage of resistance was 37.5% to ampicillin for Salmonella spp. and 59.0% to tetracycline for pathogenic E. coli. Overall the multidrug resistance rates of 1 drug was 26.2%, 2 drugs 9.0%, 3 drugs 9.5%, 4 drugs 7.1%, and 5 or more drugs 12.46%. The multi-drug (MDR) strains to four or more antimicrobial agents among the resistant organisms were quite high: 15.9% and 22.1% for Salmonella spp. and pathogenic E. coli, respectively. The study implies that limitation of unnecessary medication use is pertinent in order to maintaining the efficacy of drugs.

Study on the Mechanism of P-glycoprotein Inhibitory Activity of Silymarin in Human Breast Cancer Cell

  • Kwon, Young-Joo;Jung, Ho-Jin;Lee, Hwa-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.315-320
    • /
    • 2006
  • Silymarin showed P-glycoprptein(P-gp) inhibitory activity as much as verapamil, a well-known P-gp inhibitor, by decreasing $IC_{50}$ value of daunomycin(DNM)($16.0{\pm}0.7{\mu}M$), increasing the DNM accumulation($224.9{\pm}3.2%$), and decreasing DNM efflux($58.5{\pm}6.7%$), concurrently. In this study, we clarified the mechanism of action of silymarin for P-gp inhibitory function. First, silymarin may bind to the ATP-binding site and thus, prevent ATP hydrolysis. Second, the P-gp inhibitory activity of silymarin is not related to changing the cellular P-gp level. Third, the cytotoxicity of silymarin was increased in the presence of verapamil, reflecting that silymarin is a competent P-gp substrate against verapamil in the P-gp-overexpressed adriamycin-resistant MCF-7 breast cancer(MCF-7/ADR) cells. Conclusively, silymarin had the P-gp inhibitory activity through the action of competent binding to the P-gp substrate-binding site. Therefore, silymarin can be a good candidate for safe and effective MDR reversing agent in clinical chemotherapy by administering concomitantly with anticancer drugs.

Optimization of Experimental Conditions for In vitro P-glycoprotein Assay Using LLC-GA5 Cells

  • Ahn, A-Ra;Oh, Ju-Hee;Lee, Joo-Hyun;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.6
    • /
    • pp.363-366
    • /
    • 2010
  • Identification of compounds that function as P-glycoprotein (P-gp) substrates or inhibitors can facilitate the selection and optimization of new drug candidates. The purpose of this study is to optimize the experimental conditions for in vitro P-gp assay using LLC-GA5 cells, which is a well-known transformant cell line derived by transfecting LLC-PK1 with human MDR1. The amount of rhodamine123 transported by the LLC-GA5 and LLC-PK1 cells was evaluated under the following experimental conditions: 3 different types of transport media, colchicine pretreatment or nontreatment of the cells in the culture media, and with and without poly-L-lysine coating of the culture plates. The assay sensitivity was found to considerably differ depending on the diluents used in the transport media. P-gp-mediated transport in LLC-GA5 cells was most clearly characterized in the Hanks' balanced salt solution based transport media. The sensitivity of P-gp-mediated transport was not changed by colchicine pretreatment or poly-L-lysine coating of the culture plates.

A Study on the Development of Metadata Standard for Research Outcomes Information in Science & Technology (과학기술분야의 연구성과물정보 표준 메타데이터 개발에 관한 연구)

  • Park, Dong-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.4
    • /
    • pp.83-90
    • /
    • 2006
  • It has lately been difficult to share the research outcomes information due to the information system not being compatible with one another. To solve this problem, it is believed that a meta data standard needs to be developed for all the institutions to follow. This paper shows how to make the research outcome of Science and Technology R&D project a standard metadata. We first classified all the research outcome into the following seven groups: Report, Journal article, Presentation material, Book, Dissertation, Industrial rights, and Technology development. We then identified three components that constitute a standard metadata. We employed the Dublin Core Metadata Set and CERIF(Common European Research Information Format) for worldwide interoperability. This Standard can be applied in the following areas: 1) Developing a standard architecture to manage research result within the organization. 2) Designing a conceptual/logical database to measure and evaluate the research outcome. 3) Developing a metadata system for research outcome as a subsystem of an Industrial Technology MDR (Metadata Registry) System.