• Title/Summary/Keyword: MDF fiber

Search Result 40, Processing Time 0.025 seconds

Comparison of Moisture Absorption/Desorption Properties of Carbonized Boards Made from Wood-Based Panels (목질판상재로 제조된 탄화보드의 흡방습 성능 비교)

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.424-429
    • /
    • 2016
  • In this study, the carbonized boards were manufactured from different types of wood-based panel and then their moisture absorption/desorption properties were investigated and compared. The carbonization temperature was maximum $600^{\circ}C$ with 2 h maintains. Test results showed higher absorption/desorption capacity on carbonized plywood than carbonized MDF, PB, and OSB, respectively. However, carbonized MDF, OSB, and plywood had similar absorption/desorption rate per hour. It means carbonized OSB and plywood can transfer moisture into deeper side and then possibly hold more amount of water. Based on SEM images, carbonized OSB and plywood showed more like wood structure, while carbonized MDF and PB had only wood fiber or/and chunk of wood fragments. Therefore, original wood structure may affect moisture absorption/desorption capacity. In order to manufacture high moisture absorbing/desorbing carbonized board, wood structure should be considered and then carbonized.

Spatial Variations of Chemical Abundances in The Galactic Disk

  • Lee, Ayeon;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.58.3-58.3
    • /
    • 2020
  • We present spatial variations of chemical abundances ([Fe/H] and [α/Fe]) in the Galactic disk, using a large number of dwarfs and giants from Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST). Specifically, we investigate how the metallicity distribution function (MDF) and the alpha abundance distribution function (ADF) change with the distance from the Galactic center to understand the chemical evolution history of the Galactic disk. We also study the difference (if any) in the MDF and ADF between dwarfs and giants to provide valuable clues to the formation history of the Galactic disk.

  • PDF

5.12 Tb/s (128 × 43 Gb/s) WDM transmission over 200 km of medium dispersion fiber (5.12 Te/s(128채널 × 43 Gb/s) WDM 신호의 전송실험)

  • Jun, S.B.;Son, E.S.;Jung, S.P.;Chung, Y.C.
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.143-145
    • /
    • 2005
  • We demonstrated 5.12-Tb/s($l28 ch \times 43 Gb/s$) WDM transmission over 200 km of medium dispersion fiber. The spectral efficiency was 0.8-(bits/s)/Hz. After transmission, the average Q-factor was measured to be 15.2 dB.

The Dyeing Properties of Woody Fiber Regenerated from Waste MDF by Reactive Dyes (반응성염료에 의한 폐MDF 재생 목질섬유의 염색특성)

  • Ju, Seon-Gyeong;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.163-177
    • /
    • 2019
  • This study aims to review the relations between the dyeing conditions (i.e., dye concentration, addition amounts of salt and alkali, and dyeing temperature) and dyeing properties and color fastness to light for identifying the optimal dyeing conditions when dyed regenerated woody fibers were obtained through the defibration of waste medium density fiberboard (MDF) using reactive Red H-E3B (Bis-monochlorotriazine (MCT)/MCT type) and reactive Red RB133% (Bis-MCT/Vinyl sulphone type). The dyeing yield (K/S) obtained using two types of reactive dyes increased as the dye concentration increased by 1-10% (on the weight of fiber (OWF)). In addition, the K/S of H-E3B was higher than that of RB133% irrespective of the dye concentration. The color difference of H-E3B after ultraviolet (UV) radiation was lower than that of RB133%, denoting good resistance to discoloration by UV. As the amount of sodium sulfate increased, the color difference and K/S also increased, and the adequate salt content was determined to be 50-70 g/L. Further, the color difference and K/S significantly increased only the addition of 2 g/L of sodium carbonate; however, almost no difference was observed when more than 2 g/L of sodium carbonate was added. The addition amount of sodium carbonate was adequate 5-10 g/L to dyeing the fiber and the pH at this addition level was 10. The dyeing yield of H-E3B increased when the dyeing temperature increased; however, it subsequently decreased after the dyeing temperature became $80^{\circ}C$. The dyeing yield of RB133% was almost the same up to $60-70^{\circ}C$ but declined subsequently. Thus, the adequate temperatures were $80^{\circ}C$ and $60^{\circ}C$ for H-E3B and RB133%, respectively. If the waste MDF woody fiber was dyed under the aforementioned optimal conditions, dyed regenerated woody fiber can be obtained having the following colors: 1.5 to 2.0R with the H-E3B dye and 9.6 to 10.0 PR with RB133%.

Combustion and Mechanical Properties of Fire Retardant Treated Waste Paper-Waste Acrylic Raw Fiber Composite Board

  • Eom, Young Geun;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Shredded waste newspapers, waste acrylic raw fibers, and urea-formaldehyde (UF) adhesives, at 10% by weight on raw material, were used to produce recycled waste paper-waste acrylic raw fiber composite boards in laboratory scale experiments. The physical and mechanical properties of fire retardant treated recycled waste paper-waste acrylic raw fiber composite boards were examined to investigate the possibility of using the composites as internal finishing materials with specific gravities of 0.8 and 1.0, containing 5, 10, 20, and 30(wt.%) of waste acrylic raw fiber and 10, 15, 20, and 25(wt.%) of fire retardant (inorganic chemical, FR-7®) using the fabricating method used by commercial fiberboard manufacturers. The bending modulus of rupture increased as board density increased, decreased as waste acrylic raw fiber content increased, and also decreased as the fire retardant content increased. Mechanical properties were a little inferior to medium density fiberboard (MDF) or hardboard (HB), but significantly superior to gypsum board (GB) and insulation board (IB). The incombustibility of the fire retardant treated composite board increased on increasing the fire retardant content. The study shows that there is a possibility that composites made of recycled waste paper and waste acrylic raw fiber can be use as fire retardant internal finishing materials.

A Study on The Strength Properties of Board Using The Carbonized Rice Husks to Develop a Structural Insulation (구조용 단열재 개발을 위한 왕겨숯 보드의 강도적 성질에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.511-518
    • /
    • 2017
  • In recent years, many interests and researches on the insulations required the multiple performances other than insulation performance. The purpose of this paper is to find the optimal ratio between wood fiber and rice-husks charcoal to develop a structural board with carbonized rice-husks. Based on these rice-husks charcoals, basic research was carried out to develop thermal insulation materials with structural performance, and the following conclusions were obtained. The MC of the board using the carbonized rice-husks was 3.2-4.1% and the density was 0.58-0.68, indicating the possibility of excellent structural material. The bending strength was 9.1-32.6 MPa in the length direction and 9.2-34.1 MPa in the width direction. It is possible to obtain the bending strength of the normally used MDF level and to find the possibility of development of the thermal insulation material having the structural performances.

Drying Characteristics of Municipal Wood Waste (도시 폐기물 폐목재의 건조 특성)

  • Choi, Jeong-Hoo;Kim, Min Ha;Jo, Mi Young;Park, Ki Hoon;Jang, Eunjin;Lee, Jong-Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.409-412
    • /
    • 2010
  • This study investigated and discussed the drying characteristics of municipal wood wastes (wood, particle board, medium density fiber-board(MDF)) in the $N_2$ environment with an isothermal thermogravimetric analyzer. The drying rate could be expressed by a first order reaction model on remaining fraction of moisture. The activation energy ranged from 12.72 kJ/g mol to 18.31 kJ/g mol and the frequency factor from 0.2155 1/s to 1.249 1/s.

Sound Absorption and Physical Properties of Carbonized Fiberboards with Three Different Densities

  • Lee, Min;Park, Sang-Bum;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.555-562
    • /
    • 2014
  • Characteristics of carbonized fiberboard such as chemical materials absorption, electromagnetic shielding, and electrical and mechanical performance were determined in previous studies. The carbonized board therefore confirmed that having excellent abilities of these characteristics. In this study, the effect of density on physical properties and sound absorption properties of carbonized fiberboards at $800^{\circ}C$ were investigated for the potential use of carbonized fiberboards as a replacement of conventional sound absorbing material. The thickness of fiberboards after carbonization was reduced 49.9%, 40.7%, and 43.3% in low density fiberboard (LDF), medium density fiberboard (MDF), and high density fiberboard (HDF), respectively. Based on SEM images, porosity of carbonized fiberboard increased by carbonization due to removing adhesives. Moreover, carbonization did not destroy structure of wood fiber based on SEM results. Carbonization process influenced contraction of fiberboard. The sound absorption coefficient of carbonized low density fiberboard (c-LDF) was higher than those of carbonized medium density fiberboard (c-MDF) and carbonized high density fiberboard (c-HDF). This result was similar with original fiberboards, which indicated sound absorbing ability was not significantly changed by carbonization compared to that of original fiberboards. Therefore, the sound absorbing coefficient may depend on source, texture, and density of fiberboard rather than carbonization.

Application of silk composite to decorative laminate

  • Kimura, Teruo;Aoki, Shinpei
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.349-360
    • /
    • 2007
  • Recently, natural fiber reinforced composite is attracting attention and considered as an environmentally friendly material. Usually cellulosic fibers are used to reinforce the composites, but some protein fibers such as silk and wool serve the same purpose. In this paper, we proposed a method of producing artistic composite from artistic fabric by using silk fiber reinforced biodegradable plastic, which is designated as 'silk composite', for reinforcement. In order to expand applications of the silk composite, we performed the compression molding of decorative laminates with woody material, which was selected as a core material, and examined the properties of molded decorative laminates with various content of the silk composite. Since plywood and medium-density fiberboard (MDF) are widely used for decorative laminates, we selected them as core materials. As a result, flexible decorative laminates with high flexural strength were obtained by compounding the silk composite with wood materials.

A Study on the Ignition Delay Effect by Flame-Resistance Paint Treatment (방염 처리에 따른 화재지연 효과 연구)

  • Oh, Kyu-Hyung;Kim, Hwang-Jin;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.111-116
    • /
    • 2009
  • 17 kinds of fire resistant paint which are currently used were painted on the MDF(middle density fiber board), which suitable to the regulation of Fire Service Act. And we investigate a ignition delay effect under a exposure condition of radiative heat of fire. Radiative heat flux was controlled from $10kW/m^2$ to $30kW/m^2$ using the cone heater. Ignition time, ignition type and surface temperature of the sample were measured. Based on the experimental result, critical heat flux of the fire resistant paint treated sample was $10kW/m^2$ and there were no ignition delay effect above the $30kW/m^2$. And it was found that it will be difficult to expect the fire resistant effect above $400^{\circ}C$ of sample surface temperature.