• Title/Summary/Keyword: MCS(Monte Carlo Simulation)

Search Result 201, Processing Time 0.035 seconds

An evolutionary approach for structural reliability

  • Garakaninezhad, Alireza;Bastami, Morteza
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.329-339
    • /
    • 2019
  • Assessment of failure probability, especially for a complex structure, requires a considerable number of calls to the numerical model. Reliability methods have been developed to decrease the computational time. In this approach, the original numerical model is replaced by a surrogate model which is usually explicit and much faster to evaluate. The current paper proposed an efficient reliability method based on Monte Carlo simulation (MCS) and multi-gene genetic programming (MGGP) as a robust variant of genetic programming (GP). GP has been applied in different fields; however, its application to structural reliability has not been tested. The current study investigated the performance of MGGP as a surrogate model in structural reliability problems and compares it with other surrogate models. An adaptive Metropolis algorithm is utilized to obtain the training data with which to build the MGGP model. The failure probability is estimated by combining MCS and MGGP. The efficiency and accuracy of the proposed method were investigated with the help of five numerical examples.

Validation of MCS code for shielding calculation using SINBAD

  • Feng, XiaoYong;Zhang, Peng;Lee, Hyunsuk;Lee, Deokjung;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3429-3439
    • /
    • 2022
  • The MCS code is a computer code developed by the Ulsan National Institute of Science and Technology (UNIST) for simulation and calculation of nuclear reactor systems based on the Monte Carlo method. The code is currently used to solve two main types of reactor physics problems, namely, criticality problems and radiation shielding problems. In this paper, the radiation shielding capability of the MCS code is validated by simulating some selected SINBAD (Shielding Integral Benchmark Archive and Database) experiments. The whole validation was performed in two ways. Firstly, the functionality and computational rationality of the MCS code was verified by comparing the simulation results with those of MCNP code. Secondly, the validity and computational accuracy of the MCS code was confirmed by comparing the simulation results with the experimental results of SINBAD. The simulation results of the MCS code are highly consistent with the those of the MCNP code, and they are within the 2σ error bound of the experiment results. It shows that the calculation results of the MCS code are reliable when simulating the radiation shielding problems.

A Simplified Method for Predicting Failure Probability of Pipelines with Corrosion Defects (부식결함을 가진 배관의 파손확률 예측을 위한 단순화된 방법)

  • Lee, Jin-Han;Kim, Young-Seob;Kim, Lae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.31-36
    • /
    • 2010
  • An alternative method is presented for predicting failure probability of pipelines with corrosion defects in this paper. The failure of corroded pipeline occurs when the operating pressure is grater than the remaining strength of the pipeline, and a limit state function can be defined as the differences between the remaining strength and the operating pressure. Then, based on structural reliability theory, we can estimate the failure probability of corroded pipeline, which is dependent on elapsed time of the pipeline with active corrosion defects. In this study, a root finding (RF) method has been adopted to solve the limit state function instead of Monte-Carlo simulation (MCS) method which traditionally has been employed to solve those kinds of problems. The calculation results shows that there are only small differences between the RF and the MCS method but the RF has higher efficiency in calculation than the MCS.

Determination of Incentive Level of Direct Load Control using Monte Carlo Simulation with Variance Reduction Technique (몬테카를로 시뮬레이션을 이용한 직접부하제어의 제어지원금 산정)

  • Jeong Yun Won;Park Jong Bae;Shin Joong Rin;Chae Myung Suk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.666-670
    • /
    • 2004
  • This paper presents a new approach for determining an accurate incentive levels of Direct Load Control (DLC) program using sequential Monte Carlo Simulation (MCS) techniques. The economic analysis of DLC resources needs to identify the hourly-by-hourly expected energy-not-served resulting from the random outage characteristics of generators as well as to reflect the availability and duration of DLC resources, which results the computational explosion. Therefore, the conventional methods are based on the scenario approaches to reduce the computation time as well as to avoid the complexity of economic studies. In this paper, we have developed a new technique based on the sequential MCS to evaluate the required expected load control amount in each hour and to decide the incentive level satisfying the economic constraints. And also the proposed approach has been considered multi-state as well as two-state of the generating units. In addition, we have applied the variance reduction technique to enhance the efficiency of the simulation. To show the efficiency and effectiveness of the suggested method the numerical studies have been performed for the modified IEEE reliability test system.

  • PDF

Analysis of the Mean Energy in $SiH_4-Ar$ Mixture Gases ($SiH_4-Ar$ 혼합기체의 평균 에너지에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • This paper calculates and gives the analysis of mean energy in pure $SiH_4,\;Ar-SiH_4$ mixture gases ($SiH_4-0.5[%],\;5[%]$) over the range of $E/N =0.01{\sim}300[Td]$, p = 0.1, 1, 5.0 [Torr] by Monte Carlo the Backward prolongation method of the Boltzmann equation using computer simulation without using expensive equipment. The results have been obtained by using the electron collision cross sections by TOF, PT, SST sampling, compared with the experimental data determined by the other author. It also proved the reliability of the electron collision cross sections and shows the practical values of computer simulation. The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $SiH_4$ and Ar, were used. The differences of the transport coefficients of electrons in $SiH_4$, mixtures of $SiH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

Accuracy Evaluation of the Three-Curve Method and the Zonal Cavity Method (3배광법과 구역공간법의 정확도 평가)

  • Sim, Sang-Man;Kim, Chang-Seop;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.53-59
    • /
    • 1995
  • The accurcy and the application limits of the Three-Curve Method(TCM) and Zonal Cavity Method(ZCM) are evaluated. Average illuminance values are calculated by TCM and ZCM for various lighting conditions using general Diffusing Luminaires and Direct Luminaires. These values are compared with the values from Monte-Carlo Simulation(MCS) for the same lighting conditions. Accuracy of MCS was proved by Moon's Analytical Method.

  • PDF

Energy Distribution Function in $SF_6-Ar$ Mixtures Gas used by Simulation (MCS-BEq 시뮬레이션에 의한 $SF_6-Ar$ 에너지 분포함수)

  • Kim, Sang-Nam
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.193-196
    • /
    • 2007
  • Energy distribution function for electrons in $SF_6-Ar$ mixtures gas used by Simulation has been analysed over the E/N range 30${\sim}$300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$ mixtures were measured by time-of-flight (TOF) method. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

  • PDF

A Simulation of the Energy Distribution Function for Electron in $CF_4$-Ar Mixtures Gas ($CF_4$ 혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam;Seong, Nak-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.37-40
    • /
    • 2004
  • Electron swarm parameters in pure $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation(BEq.) method and the Monte Carlo simulation(MCS) The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy

  • PDF

A Simulation of the Energy Distribution Function for Electron in Gas Mixtures (시뮬레이션을 이용한 혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam;Yu, Heoi-Young;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.194-198
    • /
    • 2002
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-tenn approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy

  • PDF

Ionization and Attachment Coefficients in CF4 (CF4 기체에서의 전리와 부착계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.27-31
    • /
    • 2011
  • In this paper, the electron transport characteristics in $CF_4$ has been analysed over the E/N range 1~300[Td] by a two-term approximation Boltzmann equation method and by a Monte Carlo simulation. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal diffusion coefficient, the ratio of the diffusion coefficient to the mobility, electron ionization and attachment coefficients, effective ionization coefficient, mean energy, collision frequency and the electron energy distribution function. The electron energy distribution function has been analysed in $CF_4$ at E/N=5, 10, 100, 200 and 300[Td] for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Boltzmann equation and Monte Carlo simulation have been compared with experimental data by Y. Nakamura and M. Hayashi. The swarm parameter from the swarm study are expected to serve as a critical test of current theories of low energy electron scattering by atoms and molecules, in particular, as well as crucial information for quantitative simulations of weakly ionized plasmas.