• Title/Summary/Keyword: MCS(Monte Carlo Simulation)

Search Result 201, Processing Time 0.022 seconds

A Dynamic Accuracy Estimation for GPU-based Monte Carlo Simulation in Tissue Optics

  • Cai, Fuhong;Lu, Wen
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.551-555
    • /
    • 2017
  • Tissue optics is a well-established and extensively studied area. In the last decades, Monte Carlo simulation (MCS) has been one of the standard tools for simulation of light propagation in turbid media. The utilization of parallel processing exhibits dramatic increase in the speed of MCS's of photon migration. Some calculations based on MCS can be completed within a few seconds. Since the MCS's have the potential to become a real time calculation method, a dynamic accuracy estimation, which is also known as history by history statistical estimators, is required in the simulation code to automatically terminate the MCS as the results' accuracy achieves a high enough level. In this work, spatial and time-domain GPU-based MCS, adopting the dynamic accuracy estimation, are performed to calculate the light dose/reflectance in homogeneous and heterogeneous tissue media. This dynamic accuracy estimation can effectively derive the statistical error of optical dose/reflectance during the parallel Monte Carlo process.

Validation of UNIST Monte Carlo code MCS using VERA progression problems

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Choi, Sooyoung;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.878-888
    • /
    • 2020
  • This paper presents the validation of UNIST in-house Monte Carlo code MCS used for the high-fidelity simulation of commercial pressurized water reactors (PWRs). Its focus is on the accurate, spatially detailed neutronic analyses of startup physics tests for the initial core of the Watts Bar Nuclear 1 reactor, which is a vital step in evaluating core phenomena in an operating nuclear power reactor. The MCS solutions for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Virtual Environment for Reactor Applications (VERA) core physics benchmark progression problems 1 to 5 were verified with KENO-VI and Serpent 2 solutions for geometries ranging from a single-pin cell to a full core. MCS was also validated by comparing with results of reactor zero-power physics tests in a full-core simulation. MCS exhibits an excellent consistency against the measured data with a bias of ±3 pcm at the initial criticality whole-core problem. Furthermore, MCS solutions for rod worth are consistent with measured data, and reasonable agreement is obtained for the isothermal temperature coefficient and soluble boron worth. This favorable comparison with measured parameters exhibited by MCS continues to broaden its validation basis. These results provide confidence in MCS's capability in high-fidelity calculations for practical PWR cores.

Drift Velocities for Electrons in $SF_6$-Ar Mixtures Gas by MCS-Beq Algorithm (MCS-BEq에 의한 $SF_6-Ar$혼합기체(混合氣體)의 전자(電子) 이동속도(移動速度))

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.29-33
    • /
    • 2005
  • Energy distribution function for electrons in $SF_6$-Ar mixtures gas by MCS-BEq algorithm has been analysed over the E/N range $30{\sim}300$[Td] by a two term Boltana equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other, authors, experimentally the electron swarm parameters for 0.2[%} and 0.5[%] $SF_6$-Ar mixtures were measured by time-of-flight(TOF) method. The result show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with theoretical for a rang of E/N values. The results obtained from Booltemann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

Uncertainty Assessment using Monte Carlo Simulation in Net Thrust Measurement at AETF

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, In-Young;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, Monte Carlo Simulation (MCS) method was used as an uncertainty assessment tool for air flow, net thrust measurement. Uuncertainty sources of the net thrust measurement were analyzed, and the probability distribution characteristics of each source were discussed. Detailed MCS methodology was described including the effect of the number of simulation. Compared to the conventional sensitivity coefficient method, the MCS method has advantage in the uncertainty assessment. The MCS is comparatively simple, convenient and accurate, especially for complex or nonlinear measurement modeling equations. The uncertainty assessment result by MCS was compared with that of the conventional sensitivity coefficient method, and each method gave different result. The uncertainties in the net thrust measurement by the MCS and the conventional sensitivity coefficient method were 0.906% and 1.209%, respectively. It was concluded that the first order Taylor expansion in the conventional sensitivity coefficient method and the nonlinearity of model equation caused the difference. It was noted that the uncertainty assessment method should be selected carefully according to the mathematical characteristics of the model equation of the measurement.

Electron Energy Distribution function in CH4 by MCS-BEq (MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Diffusion Coefficients for Electrons in SF6-Ar Gas Mixtures by MCS-BEq (MCSBEq에 의한 SF6-Ar혼합기체의 확산계수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.3
    • /
    • pp.125-129
    • /
    • 2015
  • Energy distribution function for electrons in SF6-Ar mixtures gas used by MCS-BEq algorithm has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and a Monte Carlo Simulation using a set of electron cross sections determined by other authors experimentally the electron swarm parameters for 0.2[%] and 0.5[%] $SF_6-Ar$ mixtures were measured by time-of-flight(TOF) method, The results show that the deduced longitudinal diffusion coefficients and transverse diffusion coefficients agree reasonably well with theoretical for a rang of E/N values. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of the molecules.

The Monte Carlo Simulation and Algorithm on the Relationship Interest Rate Models for the Pricing of Bond Options (채권 옵션의 가격결정을 위한 이자율 모형의 관계에 대한 알고리즘과 몬테 카르로 시뮬레이션)

  • Lee, Gwangyeon;Park, Kisoeb
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.3
    • /
    • pp.49-56
    • /
    • 2019
  • In this paper, we deal with two pricing of bond options using the relationship between the forward rate model and the Libor rate model. First, we derive a formula for obtaining discounted bond prices using the restrictive condition of the Ritchken and Sankarasubramanian (RS), and then use the volatility function relationship of the forward rate and the Libor rate models to find the analytic solution (AS) of bond options pricing. Second, the price of the bond options is calculated by simulating several scenarios from the presented condition using Monte Carlo Simulation (MCS). Comparing the results of the implementation of the above two pricing methods, the relative error (RE) is obtained, which means the ratio of AS and MCS. From the results, we can confirm that the RE is around 3.9%, which means that the price of the bond options can be predicted very accurately using the MCS as well as AS.

A Simulation of the Energy Distribution Function for Electron in CF4, CH4, Ar Gas Mixtures (시뮬레이션에 의한 CF4, CH4, Ar혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f(\varepsilon)$ has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.

Uncertainty Evaluation of Dynamic Pressure Calibrator by Monte Carlo Simulation (몬테카를로 모사를 이용한 동압력 교정기 불확도 평가)

  • Kim, Moon-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.665-672
    • /
    • 2010
  • This paper describes Monte Carlo Simulation(MCS) to assess the uncertainty of dynamic pressure calibrator and the expanded uncertainty results that were compared by GUM approximation and MCS. MCS uncertainties were computed using defining a domain of possible inputs, generating inputs randomly using probability distribution, performing a deterministic computation repeatedly and aggregating the results. It was revealed that the expanded uncertainty between GUM and MCS was different from each other. the expanded uncertainties were 0.5366%, 0.4856%, respectively. MCS is a suitable method for determining the uncertainty of simple and complex measurement systems. It should be more widely used and studied in measurement uncertainty calculations.

The Drift Velocity of Electrons in CF4, CH4, Ar Mixtures Gas (CF4, CH4, Ar 혼합기체의 전자이동속도)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.105-109
    • /
    • 2011
  • Drift Velocity of Electrons in pure $CF_4$, $CH_4$ and mixtures of $CF_4$ and Ar. Have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.