• Title/Summary/Keyword: MCNPX 2.7.0

Search Result 14, Processing Time 0.024 seconds

400 MeV/nucleon 12C Ions Shielding Benchmark Calculations using MCNPX with Different Nuclear Data Libraries (400 MeV/nucleon 12C 이온의 MCNPX 와 핵자료를 이용한 차폐 벤치마킹 계산)

  • Shin, Yun Sung;Kim, yong min;Kim, dong hyun;Jung, nam suk;Lee, hee seock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.295-300
    • /
    • 2015
  • There are various type of particle accelerators such as Kyoungju 100-MeV proton beam accelerator in Korea. And Korea plans to build large particle accelerator such as heavy ion accelerator and 4th generation light source facility. The accelerated high energy particles of these facility produce 2nd neutron after nuclear reaction with target materials. And then these 2nd neutron activate structural materials and surrounding environment. Accordingly, it is important to consider the activation and shielding calculation on design of facility for safety operation. In this study, we tried to calculate and compare the neutron flux from the interaction $^{la}150$ beam with target material(Cu) according to thickness of iron and concrete shielding material by MCNPX 2.7 with nuclear library JENDL/HE 07and la150. To verify the properties of nuclear library, we compared computational results with experimental value. These results can be used for dose evaluation technology in planning of the shielding of large particle accelerator.

Analysis of Photon Characteristics and Absorbed Dose with Cone Beam Computed Tomography (CBCT) using Monte Carlo Method (몬테칼로 기법을 이용한 CBCT의 광자선 특성 및 선량 분석)

  • Kim, Jong-Bo;Kim, Jung-Hoon;Park, Eun-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The cone beam computed tomography(CBCT) which can acquire 3-dimensions images is widely used for confirmation of patient position before radiation therapy. In this study, through the simulation using the Monte Carlo technique, we will analyze the exposure dose by cone beam computed tomography and present the standardized data. For the experiment, MCNPX(ver. 2.5.0) was used and the photon beam spectrum was analyzed after Cone beam was simulated. As a result of analyzing the photon beam spectrum, the average energy ranged from 25.7 to 37.6 keV at the tube voltage of 80 ~ 120 kVp and the characteristic X-ray energy was 9, 60, 68 and 70 keV. As a result of using the water phantom, the percentage depth dose was measured, and the maximum dose appeared on the surface and decreased with depth. The absorbed dose also decreased as the depth increased. The absorbed dose of the whole phantom was 9.7 ~ 18.7 mGy. This is a dose which accounts for 0.2% of about 10 Gy, which is generally used for radiation therapy per week, which is not expected to have a significant effect on the treatment effect. However, it should not be overlooked even if it is small compared with prescription dose.

Evaluation of Radiation Dose for Dual Energy CBCT Using Multi-Grid Device (에너지 변조 필터를 이용한 이중 에너지 콘빔 CT의 선량 평가)

  • Ju, Eun Bin;Ahn, So Hyun;Cho, Sam Ju;Keum, Ki Chang;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.

Reliability Verification of FLUKA Transport Code for Double Layered X-ray Protective Sheet Design (이중 구조의 X선 차폐시트 설계를 위한 FLUKA 수송코드의 신뢰성 검증)

  • Kang, Sang Sik;Heo, Seung Wook;Choi, Il Hong;Jun, Jae Hoon;Yang, Sung Woo;Kim, Kyo Tae;Heo, Ye Ji;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.547-553
    • /
    • 2017
  • In the current medical field, lead is widely used as a radiation shield. However, the lead weight is very heavy, so wearing protective clothing such as apron is difficult to wear for long periods of time and there is a problem with the danger of lethal toxicity in humans. Recently, many studies have been conducted to develop substitute materials of lead to resolve these problems. As a substitute materials for lead, barium(Ba) and iodine(I) have excellent shielding ability. But, It has characteristics emitting characteristic X-rays from the energy area near 30 keV. For patients or radiation workers, shielding materials is often made into contact with the human body. Therefore, the characteristic X-rays generated by the shielding material are directly exposured in the human body, which increases the risk of increasing radiation absorbed dose. In this study, we have developed the FLUKA transport code, one of the most suitable elements of radiation transport codes, to remove the characteristic X-rays generated by barium or iodine. We have verified the reliability of the shielding fraction of the structure of the structure shielding by comparing with the MCPDX simulations conducted as a prior study. Using the MCNPX and FLUKA, the double layer shielding structures with the various thickness combination consisting of barium sulphate ($BaSO_4$) and bismuth oxide($Bi_2O_3$) are designed. The accuracy of the type shown in IEC 61331-1 was geometrically identical to the simulation. In addition, the transmission spectrum and absorbed dose of the shielding material for the successive x-rays of 120 kVp spectra were compared with lead. In results, $0.3mm-BaSO_4/0.3mm-Bi_2O_3$ and $0.1mm-BaSO_4/0.5mm-Bi_2O_3$ structures have been absorbed in both 33 keV and 37 keV characteristic X-rays. In addition, for high-energy X-rays greater than 90 keV, the shielding efficiency was shown close to lead. Also, the transport code of the FLUKA's photon transport code was showed cut-off on low-energy X-rays(below 33keV) and is limited to computerized X-rays of the low-energy X-rays. But, In high-energy areas above 40 keV, the relative error with MCNPX was found to be highly reliable within 6 %.

Evaluation of Absorbed Dose According to the Gold Nanoparticle Density in Prostate Cancer Brachytherapy (전립선암의 근접치료 시 금 나노입자 밀도에 따른 흡수선량평가)

  • Lee, Deuk-Hee;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.247-252
    • /
    • 2019
  • This study was evaluated absorbed dose according to the gold nanoparticle density in prostate brachytherapy which was constantly occurred in Korean men. Absorbed dose evaluation was using MCNPX program which was applied Monte Carlo simulation. Source were applied $^{192}Ir$ which was temporary insertion source and $^{103}Pd$ which was permanently insertion source. And gold nanoparticle density was applied 0 mg, 7 mg, 18 mg and 30 mg. The prostate absorbed dose was increased in proportion to the density 2.95E-14 Gy/e to 4.42E-14 Gy/e in $^{192}Ir$ and showed the same tendency in $^{103}Pd$. And surrounding organ absorbed dose was inversely proportional to the density. Therefore using nanoparticle in brachytherapy was increased therapeutic ratio.

The Effects of Image Quality due to Scattering X-ray according to increasing Patient Thickness (피사체 두께에 따른 산란선 발생이 화질에 미치는 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jun, Jae-Hoon;Cho, Su-Yeon;Kim, Kyo-Tae;Heo, Ye-Ji;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.671-677
    • /
    • 2017
  • In this study, scattering factors affecting the quality of medical images were quantitatively analyzed and investigated. MCNPX simulation was conducted by using ANSI phantom, made of tissue equivalent materials, to calculate the scattering ratio occurred by the increase of the object thickness. Then, the result of the simulation was compared with the result of actual radiation measurement. In addition, we evaluated the image quality by the RMS evaluation, RSD and NPS analysis using X-ray images acquired with increasing object thickness. Furthermore, the scattering ratio was analyzed by increasing the thickness of acrylic phantom on chest phantom. The result showed that the scattering ratio was increased to 57.2%, 62.4%, and 66.8% from 48.9%, respectively, when the acrylic phantom thickness was increased by 1 inch from 6.1 inches. The results of MCNPX simulation and the actual measured scattering dose showed similar results. Also, as a result of RMS measurement from acquired x-ray images, the standard deviation decreased as the object thickness increased. However, in the RSD analysis considering the average incident dose, the results were increased from 0.028 to 0.039, 0.051, 0.062 as the acrylic phantom thickness was increased from 6.1 inches to 7.1 inch, 8.1 inch, and 9.1 inch, respectively. It can be seen that the increase of the scattering effect due to the increase of the object thickness reduces the SNR. Also, the NPS results obtained by measuring scattered radiation incident on the detector resulted in the increase of the noise as the object thickness increased.

Beam Spoiler-dependent Total Body Irradiation Dose Assessment (전신방사선조사 시 선속 스포일러에 따른 선량 분포 및 영향 평가)

  • Lee, Dong-Yeon;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.141-148
    • /
    • 2018
  • This study examined the properties of photons and the dose distribution in a human body via a simulation where the total body irradiation(TBI) is performed on a pediatric anthropomorphic phantom and a child size water phantom. Based on this, we tried to find the optimal photon beam energy and material for beam spoiler. In this study, MCNPX (Ver. 2.5.0), a simulation program based on the Monte Carlo method, was used for the photon beam analysis and TBI simulation. Several different beam spoiler materials (plexiglass, copper, lead, aluminium) were used, and three different electron beam energies were used in the simulated accelerator to produce photon beams (6, 10, and 15 MeV). Moreover, both a water phantom for calculating the depth-dependent dosage and a pediatric anthropomorphic phantom for calculating the organ dosage were used. The homogeneity of photon beam was examined in different depths for the water phantom, which shows the 20%-40% difference for each material. Next, the org an doses on pediatric anthropomorphic phantom were examined, and the results showed that the average dose for each part of the body was skin 17.7 Gy, sexual gland 15.2 Gy, digestion 13.8 Gy, liver 11.8 Gy, kidney 9.2 Gy, lungs 6.2 Gy, and brain 4.6 Gy. Moreover, as for the organ doses according to materials, the highest dose was observed in lead while the lowest was observed in plexiglass. Plexiglass in current use is considered the most suitable material, and a 6 or 10 MV photon energy plan tailored to the patient condition is considered more suitable than a higher energy plan.

Analysis of Photon Spectrum for the use of Added Filters using 3D Printing Materials (3D 프린팅 재료를 이용한 X-선 부가 여과 시 광자 스펙트럼에 대한 분석)

  • Cho, Yong-In;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • 3D printing technology is being used in various fields such as medicine and biotechnology, and materials containing metal powder are being commercialized through recent material development. Therefore, this study intends to analyze the photon spectrum during added filtration using 3D printing material during diagnostic X-ray examination through simulation. Among the Monte Carlo techniques, MCNPX (ver. 2.5.0) was used. First, the appropriateness of the photon spectrum generated in the simulation was evaluated through SRS-78 and SpekCalc, which are X-ray spectrum generation programs in the diagnostic field. Second, photon spectrum the same thickness of Al and Cu filters were obtained for characterization of 3D printing materials containing metal powder. In addition, the total photon fluence and average energy according to changes in tube voltage were compared and analyzed. As a result, it was analyzed that PLA-Al required about 1.2 ~ 1.4 times the thickness of the existing Al filter, and PLA-Cu required about 1.4 ~ 1.7 times the thickness of the Cu filter to show the same degree of filtration. Based on this study in the future, it is judged that it can be utilized as basic data for manufacturing 3D printing additional filters in medical fields.

The Performance Test of Anti-scattering X-ray Grid with Inclined Shielding Material by MCNP Code Simulation

  • Bae, Jun Woo;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.111-115
    • /
    • 2016
  • Background: The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. Materials and Methods: The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. Results and Discussion: The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination. Conclusion: It was shown that the grid of inclined type had better performance than that of parallel one.

Construction of MIRD-type Korean Adult Male Phantom and Calculation of Dose Conversion Coefficients for Photon (한국 성인남성 MIRD형 모의피폭체 제작 및 광자 외부피폭 선량환산인자 산출)

  • Park, Sang-Hyun;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • MIRD-type Korean adult male phantom, 'KMIRD' was constructed to calculate Korean-specific dosimetric quantities for radiation protection consideration. The external shape of KMIRD was based on national physical standard data of Korean. KMIRD has thicket trunk than MIRD5 and arm models divided from trunk. The height and weight of the KMIRD are 171 cm and 63.8 kg. ICRP23 data were referred to constitute organs and tissues of KMIRD. However nine organs were constructed based on Korean reference data provided by Radiation Health Research Institute. In the present study, the MCNPX2.3 Monte Carlo transport code was combined with KMIRD to calculate dose conversion coefficients for photon in the energy range from 0.05 to 10 MeV. The simulated irradiation geometries are broad parallel photon beams in AP, PA, LLAT and RLAT direction. Absorbed dose conversion coefficients were compared with data calculated with MIRD5, MIRD-type phantom based on ICRP23 reference man. In some organs, the discrepancies between two phantoms amount up to nearly 30%. The effective doses conversion coefficients of KMIRD are lower than those of MIRD5. The dose discrepancies between two MIRD-type phantoms ate because of physical differences between Korean and Western, also geometric differences between two phantoms. KMIRD should be revised using the full set of Korean reference data of all organs. The developed MIRD-type Korean adult male phantom can be applied to dose assessment of internal exposure.