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Ⅰ. INTRODUCTION 

Leukaemia, which makes up ~30% of all childhood 

cancers[1], is characterized by malignant transformation 

of hematopoietic cells followed by proliferation within 

bone marrow and lymph nodes and subsequent release 

into peripheral blood and infiltration into various 

tissues[2]. Chemotherapy and hematopoietic stem cell 

transplantation (HSCT) are its standard therapies[2], 

employed for low- and high-risk patient groups, 

respectively[3]. In particular, HSCT is preferred in 

pediatric patients as a curative therapy[4].

Pre-treatment, an integral part of HSCT, fulfils 

two important functions: removing cancerous cells 

that may remain in the existing hematopoietic cells, 

and preparing a favourable condition for the 

engraftment of the transplanted hematopoietic stem 

cells by providing sufficient immunosuppression of 
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the existing hematopoietic cells[5,6]. 

Total body irradiation (TBI) and chemotherapy are 

used as preparatory regimens either alone or in 

combination[7]. TBI is easy to administer and has 

other advantages over chemotherapeutic agents, such 

as cost-effectiveness and absence of cross-tolerance 

to other anticancer agents. In addition, it ensures 

uniform irradiation of the entire body irrespective of 

the blood flow rate, thus reaching the tissues and 

organs difficult to penetrate with anticancer agents[7]. 

However, TBI can have adverse outcomes such as 

growth retardation, developmental disorders, hormonal 

imbalance, neurological complications, and secondary 

malignancies[8]. Pre-intervention dose assessment 

for each organ is especially important for children 

because they are considerably more sensitive to 

radiation than adults are. Currently, the dose-related 

recommendation for TBI only states that over 90% of 

prescribed dose should be absorbed into the skin 

surface without any mention of internal organ doses 

[4-6,8-9]. 

In this study, we examined the properties of 

photons and the dose distribution in a human body via 

a simulation where the total body irradiation is 

performed on a pediatric anthropomorphic phantom 

and a child size water phantom. Based on this, we 

tried to find the optimal photon beam energy and 

material for beam spoiler. Therefore, a simulation 

with water phantom and pediatric anthropomorphic 

phantom in virtual space is conducted to examine 

the doses on human organs using the pediatric 

anthropomorphic phantom and the properties of 

photons according to water depths. Based on this, we 

aim to determine whether the existing plexiglass 

material currently used for the TBI can be replaced 

and to propose the optimal photon beam energy.

Ⅱ. MATERIALS AND METHODS

MCNPX, as a code using the Monte-Carlo method, 

was developed by Los Alamos National Laboratory. It 

can transport a total of 34 particles including electron, 

photon, neutron, and quantum while defining various 

types of desired calculations and source terms for 

users[10]. Moreover, MCNPX runs under Windows 

operating systems, which makes the code accessible 

for users. In particular, the Tally, as a code that 

represents a way of expressing the resulting values, 

allows different physical quantity such as fluency, 

energy distribution, or energy absorption to be printed 

out. The tallies used for this research are F5 and F6. 

F5 is used to represent the number of particles per 

unit area (㎠) with an imaginary spherical detector 

installed in a desired space. F6 expresses the energy 

(MeV) received per unit mass (g) by specifying a region 

of interest. MCNPX was used for evaluating the dose, 

and the resulting values were calculated in MeV/g by 

using Tally 6, which were converted into units of Gy. 

The calculation was performed assuming that 16 Gy is 

prescribed in the AP direction since the dose allowed 

for total body irradiation is usually 32 Gy.

In this study, MCNPX (Ver. 2.5.0)[10], a simulation 

program based on the Monte Carlo method, was used 

for photon beam analysis and TBI simulation. First, 

photons generated by a simulated linear accelerator 

head were analysed, and TBI was performed on a 

simulated real-size water phantom and pediatric 

anthropomorphic phantom for dose assessment for 

different water depths and various organs.

1. Photon beam spectra 

The simulation in this study was built on the basis 

of the shape and material of a linear accelerator 

borrowed from existing research studies, rather than 

using a linear accelerator produced by a specific 

company, in order to obtain standardized data[11-12]. 

In line with the analysis purpose, i.e. observations of 

beam patterns and dose distributions on the water 

phantom and the pediatric anthropomorphic phantom 

exposed to TBI, respectively, a simplified linear 

accelerator structure was used for simulation purposes 

focusing on the linear accelerator head where photons 

are generated. Fig. 1 shows the geometric structure of 

the linear accelerator head. The beam energy for the 

dose assessment was varied between 6, 10, and 15
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MeV, and a round virtual dosimeter was placed under 

the 10㎝ point immediately after the flattening filter, 

making calculates at 1 keV intervals. The F5 tally 

option was used, and the photon flux per electron was 

expressed as the number of incident photons per unit 

area (㎠) per second. The reliability of the simulated 

linear accelerator head was evaluated on the basis of 

the photon spectra calculated, and the TBI-related 

dose assessment was performed using the water 

phantom and the pediatric anthropomorphic phantom.

2. Water phantom

The simulated real-size water phantom model was 

based on an average 5-year-old child (height: 110㎝, 

weight: 18㎏, thickness: 15㎝), the age with the 

highest leukaemia incidence[13-15]. The thickness 

was partitioned at 1㎝ interval to enable thickness- 

dependent dose assessment (Fig. 2). The F6 tally 

option was used for calculating the total energy 

deposition within a 1 cm slice. The deposited energy 

(MeV/g) calculated was then converted into absorbed 

dose (Gy). 

3. Pediatric anthropomorphic phantom

The pediatric anthropomorphic phantom used in 

this study is the UF Revised ORNL phantom for 

pediatric radiology, a medical internal radiation dose 

(MIRD)-type phantom. The UF Revised ORNL phantom 

is a revised version of the whole-body anthropomorphic 

phantom developed at the Oak Ridge National Laboratory 

(ORNL) for calculating internal radiation exposure of 

the organs made of specific materials. The revised 

ORNL phantom includes the head (containing the brain), 

kidneys, recto-sigmoid colon, and extrapulmonary 

airway based on a recently developed anthropomorphic 

model, in addition to salivary glands, bladder mucosa, 

a digestive tract, and airway. Fig. 3 schematically 

illustrates the organs[13] with their respective masses 

and densities in accordance with the specifications of 

the International Commission on Radiological Protection 

(ICRP) 89[14] and International Commission on Radiation 

Units and Measurements (ICRU) 46[15]. The F6 tally 

option was used for calculating the deposited energy 

(MeV/g), which were then converted into the absorbed 

dose (Gy). The elemental composition, percentage, 

density, and volume for materials that make up brain, 

lung, skin, muscle, liver, kidney, genital gland, and 

digestion are shown in Tables 1 and 2.

Fig. 1 Schematic of the linear accelerator head in MCNPX

Fig. 2 Water phantom similar to pediatric   

Fig. 3 Images of the anthropomorphic phantom in anterior, 

diagonal, and lateral position
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4. Materials for beam spoiler

Materials used for the beam spoiler were 1.5㎝ 

plexiglass (C5O2H8, density:1.16 g/㎤)[16] widely used 

in clinical settings as a reference material, 1.5 cm 

aluminium (13Al, density: 2.7 g/㎤, Al) with similar 

atomic number and density, and 0.3 cm copper (29Cu, 

density: 8.94 g/㎤, Cu) and lead (82Pb, density: 11.34 

g/㎤, Pb) with higher atomic numbers and densities. 

The thicknesses were calculated on the basis of 

previous studies[17-18], which indicated similar doses 

were yielded when the thickness of the Cu was about 

one third the thickness of the Al material. While 

existing theories recommend the closest possible beam 

spoiler-to-patient distance (SPD)[4-7], SPD was set 

at 10 cm, given that gapless application is not 

implementable. Furthermore, as materials for the 

head and lungs requiring shielding, we used Lipowitz 

alloy (83Bi, 82Pb, 50Sn, 48Cd, density: 9.4 g/㎤), which 

has a high shielding rate and low melting point due to 

the high atomic numbers of the components, and 

ensured sufficient shielding with a thickness of 7.5㎝ 

corresponding to 5 half value layers that can shield ≥

95% of the primary beam[6]. 

5. Simulation methods

Of the two major TBI methods, we used the 

anterior-posterior method in which radiation is 

delivered towards the body front with the umbilicus as 

the midpoint[9]. Photon energy intensity was varied 

to 6, 10, and 15 MV in the continuous radiation beams 

analysed in this study, and the source-to-skin 

distance (SSD) was set at 300 cm to sufficiently cover 

the height of 110 cm. Simulations were performed as 

described below and the depth-dependent doses and 

organ doses were calculated and evaluated in the water 

phantom and anthropomorphic phantom, respectively. 

The simulation values were converted on the basis of 

the assumption that TBI is administered at 16Gy.

Element
Percent by weight

Brain Lung Liver Digestion Skin Muscle Testis Ovary Kidney

H 10.7 10.3 10.3 10.6 10 10.2 10.6 10.5 10.3

C 14.5 10.5 18.6 11.5 20.4 14.3 9.9 9.3 13.2

N 2.2 3.1 2.8 2.2 4.2 43.4 2.0 2.4 3.0

O 71.2 74.9 67.1 75.1 64.5 71 76.6 76.8 72.4

Na 0.2 0.2 0.2 0.1 0.2 0.1 0.2 0.2 0.2

P 0.4 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.1

S 0.2 0.3 0.3 0.1 0.2 0.3 0.2 0.2

Cl 0.3 0.3 0.2 0.2 0.3 0.1 0.2 0.2

Ka 0.3 0.2 0.3 0.1 0.1 0.4 0.2 0.2

Mg 0.2

Si 0.2

Table 1 Composition of the tissue for the anthropomorphic phantom.

Organ
Density

(g/cm3)

Volume

(cm3)
Organ

Density

(g/cm3)

Volume

(cm3)

Brain 1.04 1194 Lung 0.260 980

Digestion 1.03 439.14 Liver 1.05 562

Skin 1.09 514.74 Muscle 1.03 7547.568

Ovary 1.05 1.66 Testis 1.04 1.57

Kidney 1.05 111.12

Table 2 Volume and density of anthropomorphic Phantom
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Ⅲ. RESULTS

1. Photon spectra

Fig. 4 illustrates the photon beam spectra obtained 

using electron beams of 6, 10, and 15 MeV in a 

simulated linear accelerator. The average energies for 

the calculated photons were 1.44, 2.12, and 2.85MeV 

at 6, 10, and 15MeV incident energies, respectively, 

and the incident photon energy of 511 keV was 

calculated for all variants.

2. Thickness-dependent dose calculated in 

the water phantom

Fig. 5 shows the absorbed dose (Gy) versus the 

thickness of the water phantom at 1-cm intervals.

Dosimetric comparison between the incident photon 

beam area (1㎝) and the deepest area (15㎝) revealed 

the average dose differences for Al, plexiglass, Cu, 

and Pb to be 40.2%, 40.9%, 35.5%, and 21%, 

respectively, showing similar energy-dependent dose 

differences.

3. Deep organ dose

In the following, Fig. 6 shows radiation simulations 

of deep organ dose in terms of the absorbed dose (Gy) 

in the skin, sexual gland, digestive tract, liver, 

kidneys, lungs, and brain. The approximate average 

absorbed dose and energy- and material-dependent 

changes in dose for each organ are as follows. 

Skin: 17.7Gy; in plexiglass, Al, and Cu, the dose 

was inversely related to energy, and in Pb, positively 

related.

Sexual gland: 15.2Gy; a lower dose was observed 

for 10MV compared to 6 and 15 MV.

Digestive track: 13.8Gy; in plexiglass, Al, and Cu, 

the dose was inversely related to energy, and in Pb, 

it was positively related.

Liver: 11.8 Gy; in plexiglass, the dose was inversely 

related to energy, and the highest dose was recorded 

at 6MV in Al and Cu, and at 15MV in Pb.

Kidneys: 9.2Gy; in plexiglass, Al and Cu, the 

highest dose was recorded at 6 MV, and in Pb, at 15

MV.

Lungs: 6.2Gy, in plexiglass, Al, and Cu, the dose 

was inversely related to energy, and in Pb, a slightly 

higher dose was exhibited at 10 MV compared to other 

doses.

Brain: 4.6Gy; in plexiglass, Al, and Cu, the dose 

was inversely related to energy, and in Pb, the 

highest dose was exhibited at 6MV.

Fig. 4 Photon spectra calculated in the simulation
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Fig. 5 Thickness-dependent doses calculated in the water phantom

Fig. 6 Material- and energy-dependent deep organ doses
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Ⅳ. DISCUSSION

This study carried out a simulation on water 

phantom and pediatric anthropomorphic phantom to 

examine the effects of the total body irradiation on 

children.

First, the average photon beam energy at 6MV 

calculated in this study was ～10% lower than those 

calculated by Mesbahi et al.[19] using Geant3 and by 

Baumgartner et al.[20] using PENELOPE-2006 (1.67 

and 1.65MeV, respectively). This is assumed to be 

attributable to the geometric difference of the linear 

accelerator simulated in this study and the point of 

calculate of the photon spectra, especially the 

calculate point placement underneath the target 

where low-energy photons are concentrated.

Second, the depth-dependent dose in the water 

phantom showed smaller differences between the 

shallowest (1㎝) and deepest (15㎝) positions when Cu 

and Pb materials were used as the beam spoiler 

compared to the plexiglass or Al materials, with the 

Pb material showing the smallest dose difference. This 

may be explained by the high absorption rate of 

low-energy photons in a high atomic number and high 

density material, resulting in beam hardening.

Third, the organ doses were calculated on the 

pediatric anthropomorphic phantom in the decreasing 

order of skin, sexual gland, digestive, liver, kidneys, 

lungs, and brain. Such differences may be ascribed to 

the differences in volume and density of the organs. 

The low organ doses for the lungs and brain are 

attributable to the shielding calculate, and for the 

kidneys, to their position in the retroperitoneal space 

and thus lower exposure to the anterior–posterior 

delivered radiation.

Fourth, the material-dependent dose showed the 

highest value by plexiglass, followed by Al, Cu, and 

Pb. This is because material with a high atomic 

number and high density absorbs a higher amount of 

photons. Therefore, high organ doses may be ascribed 

to the necessity for corresponding dose adjustments to 

ensure sufficient prescribed doses.

Ⅴ. CONCLUSION

This study aims to determine whether the plexiglass 

beam spoiler currently used in clinical settings during 

the total body irradiation can be replaced with other 

materials such as Al, Cu, or Pb, and to propose an 

optimal photon beam energy. 

First, Pb and Cu are not suitable materials because 

they incur high organ doses by absorbing large 

amount of photons, but they are advantageous in 

terms of depth-dependent beam homogeneity.

Second, energy and organ dose are inversely 

related. However, 15MV is considered unsuitable 

because it does not satisfy the requirement for more 

than 90% of the prescribed dose.

Lastly, taking these analysis results together, 

Plexiglass in current use is considered the most 

suitable material, and a 6 or 10 MV photon energy 

plan tailored to patient condition is considered more 

suitable than a higher energy plan.
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