• Title/Summary/Keyword: MCNP Simulation code

Search Result 65, Processing Time 0.024 seconds

Evaluation of Neutron Shielding Performance of Polyethylene Coated Boron Carbide-Incorporated Cement Paste using MCNP Simulation (MCNP 시뮬레이션을 통한 폴리에틸렌 코팅 탄화붕소 혼입 시멘트 페이스트의 중성자 차폐 성능 평가)

  • Park, Jae-Yeon;Jee, Hyeon-Seok;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.114-115
    • /
    • 2018
  • To develop an effective shielding material for spent fuel that emits fast neutrons is necessary. In this study, thermal neutron and fast neutron shielding performance of polyethylene coated boron carbide-incorporated cement paste was quantitatively analyzed by Monte Carlo N-Particle transport code (MCNP) simulations. As the results of the simulations, fast neutrons were effectively shielded through large quantity of hydrogen and boron elements in polyethylene and boron carbide.

  • PDF

Development of an MCNP-Based Cone-Beam CT Simulator (MCNP 기반의 CBCT 전산모사 시스템 개발)

  • Lim, Chang-Hwy;Cho, Min-Kook;Han, Jong-Chul;Youn, Han-Bean;Yun, Seung-Man;Cheong, Min-Ho;Kim, Ho-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.351-359
    • /
    • 2009
  • We have developed a computer simulator fur cone-beam computed tomography (CBCT) based on the commercial Monte Carlo code, MCNP. All the functions to generate input files, run MCNP, convert output files to image data, reconstruct tomographs were realized in graphical user-interface form. The performance of the simulator was demonstrated by comparing with the experimental data. Although some discrepancies were observed due to the ignorance of the detailed physics in the simulation, such as scattered X-rays and noise in image sensors, the overall tendency was well agreed between the measured and simulated data. The developed simulator will be very useful for understanding the operation and the better design of CT systems.

Optimization of airborne alpha beta detection system modeling using MCNP simulation

  • Sung, Si Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.841-845
    • /
    • 2020
  • An airborne alpha beta detection system using passivated implanted planar silicon (PIPS) detector was modeled with the MCNP6 code and its resolution and detection efficiency were analyzed. Simulation of the resolution performed using the Gaussian energy broadening (GEB) function showed that the full width at half maximum (FWHM) of 35.214 keV for alpha particles was within 34-38 KeV, which is the FWHM range of the actual detector, and the FWHM of 15.1 keV for beta particles was constructed with a similar model to 17 keV, which is the FWHM range of an actual detector. In addition, the detection efficiency and the resolution were simulated according to the distance between the detector and the air filter. When the distance was decreased to 0.2 cm from 0.8 cm, the efficiency of the alpha and beta particles detection decreased from 5.33% to 4.89% and from 5.64% to 4.27%, respectively, and the FWHM of the alpha and beta particles improved from 40.9 KeV to 29.84 keV and 25.76 keV-13.27 keV, respectively.

The Performance Test of Anti-scattering X-ray Grid with Inclined Shielding Material by MCNP Code Simulation

  • Bae, Jun Woo;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.111-115
    • /
    • 2016
  • Background: The scattered photons cause reduction of the contrast of radiographic image and it results in the degradation of the quality of the image. In order to acquire better quality image, an anti-scattering x-ray gird should be equipped in radiography system. Materials and Methods: The X-ray anti-scattering grid of the inclined type based on the hybrid concept for that of parallel and focused type was tested by MCNP code. The MCNPX 2.7.0 was used for the simulation based test. The geometry for the test was based on the IEC 60627 which was an international standard for diagnostic X-ray imaging equipment-Characteristics of general purpose and mammographic anti-scatter grids. Results and Discussion: The performance of grids with four inclined shielding material types was compared with that of the parallel type. The grid with completely tapered type the best performance where there were little performance difference according to the degree of inclination. Conclusion: It was shown that the grid of inclined type had better performance than that of parallel one.

EXPERIMENTAL VALIDATION OF THE BACKSCATTERING GAMMA-RAY SPECTRA WITH THE MONTE CARLO CODE

  • Hoang, Sy Minh Tuan;Yoo, Sang-Ho;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • In this study, simulations were done of a 661.6 keV line from a point source of $^{137}Cs$ housed in a lead shield. When increasing the scattering angle from 60 to 120 degrees with a 6061 aluminum alloy target placed at angles of 30 and 45 degrees to the incident beam, the spectra showed that the single scattering component increases and that the multiple scattering component decreases. The investigation of the single and multiple scattering components was carried out using a MCNP5 simulation code. The component of the single Compton scattering photons is proportional to the target electron density at the point where the scattering occurs. The single scattering peak increases according to the thickness of the target and saturates at a certain thickness. The signal-to-noise ratio was found to decrease according to the target thickness. The simulation was experimentally validated by measurements. These results will be used to determine the best conditions under which this method can be applied to testing electron densities or to assess the thickness of samples to locate defects in them.

Kinetics calculation of fast periodic pulsed reactors using MCNP6

  • Zhon, Z.;Gohar, Y.;Talamo, A.;Cao, Y.;Bolshinsky, I.;Pepelyshev, Yu N.;Vinogradov, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1051-1059
    • /
    • 2018
  • Fast periodic pulsed reactor is a type of reactor in which the fission bursts are formed entirely with external reactivity modulation with a specified time periodicity. This type of reactors could generate much larger intensity of neutron beams for experimental use, compared with the steady state reactors. In the design of fast periodic pulsed reactors, the time dependent simulation of the power pulse is majorly based on a point kinetic model, which is known to have limitations. A more accurate calculation method is desired for the design analyses of fast periodic pulsed reactors. Monte Carlo computer code MCNP6 is used for this task due to its three dimensional transport capability with a continuous energy library. Some new routines were added to simulate the rotation of the movable reflector parts in the time dependent calculation. Fast periodic pulsed reactor IBR-2M was utilized to validate the new routines. This reactor is periodically in prompt supercritical state, which lasts for ${\sim}400{\mu}s$, during the equilibrium state. This generates long neutron fission chains, which requires tremendously large amount of computation time during Monte Carlo simulations. Russian Roulette was applied for these very long neutron chains in MCNP6 calculation, combined with other approaches to improve the efficiency of the simulations. In the power pulse of the IBR-2M at equilibrium state, there is some discrepancy between the experimental measurements and the calculated results using the point kinetics model. MCNP6 results matches better the experimental measurements, which shows the merit of using MCNP6 calculation relative to the point kinetics model.

Monte Carlo simulation of the electronic portal imaging device using GATE

  • Chung, Yong-Hyun;Baek, Cheol-Ha;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.3
    • /
    • pp.11-16
    • /
    • 2007
  • In this study, the potential of a newly developed simulation toolkit, GATE for the simulation of electronic portal imaging devices (EPID) in radiation therapy was evaluated by characterizing the performance of the metal plate/phosphor screen detector for EPID. We compared the performances of the GATE simulator against MCNP4B code and experimental data obtained with the EPID system in order to validate its use for radiation therapy.

  • PDF

Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations

  • Chang M. Kang;Seung-Tae Jung;Seong-Hwan Pyo;Youjung Seo;Won-Gu Kang;Jin-Kyu Kim;Young-Chang Nho;Jong-Seok Park;Jae-Hak Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4678-4684
    • /
    • 2023
  • Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator.

RADIATION SAFETY ASSESSMENT FOR KN-12 SPENT NUCLEAR FUEL TRANSPORT CASK USING MONTE CARLO SIMULATION

  • Kim, J.K.;Kim, G.H.;Shin, C.H.;Choi, H.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • The KN-12 spent nuclear fuel (SNF) transport cask is designed for transportation of up to 12 assemblies and is in standby status for being licensed in accordance with Korea Atomic Energy Act. To evaluate radiation shielding and criticality safety of the KN-12 cask, each case of study was carried out using MCNP4B Code. MCNP code is verified by performing benchmark calculation for the KSC-4 SNF cask designed in 1989. As a result of radiation safety evaluation for the KN-12 cask, calculated dose rates always satisfied the standards at the cask surface, at 2m from the surface in normal transport condition, and at 1 m from the surface in hypothetical accident condition. Maximum dose rate was always arisen on the side of the cask. For normal transport condition, photons primarily contribute to dose rate between two kinds of released sources, neutrons and photons, from spent nuclear fuel but for hypothetical accident condition, contrary case was resulted. The level of calculated dose rate was 27.8% of the limit at the cask surface, 89.3% at 2 m from the cask surface, and 25.1% at 1 m from the cask surface. For criticality analysis, keff resulting from the criticality analysis considering the condition of optimum partial flooding with fresh water is 0.89708(0.00065. The results confirm the standards recommended by all regulations on radiation safety.

  • PDF

Changes according to the geometry of the shield using MCNP code system (MCNP코드 시스템을 이용한 차폐물 geometry에 따른 결과 변화에 대한 연구)

  • Kang, Ki-byung;Lee, Nam-ho;Hwang, Young-kwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1031-1033
    • /
    • 2013
  • Radiation protection, as well as finding the location of the radiation source, such as the Fukushima radiation leak accident, it is important for the early and safe disposal of nuclear accident. The three-dimensional position of the radiation source detection distance of the radiation source can provide additional information to the existing radiation detectors radiation of a two-dimensional position detection function and then it can play a decisive role in the radiation contaminant removal and decontamination work. In this research, three-dimensional semiconductor sensor based on dual radiation detectors radiation source device visible part of the research and development of efficient radiation sensor unit on the design of the shielding structure.The lightweight, high-efficiency radiation source locator implementation was attempted for the structure and thickness of the shielding and collimator to perform the simulation of the radiation shielding for the various parameters of the shape model through design the optimal structure of the MCNP-based heavy-duty tungsten shielding, lead shielding The results of this study, is a compact, lightweight three-dimensional radiation source detection and future of silicon - based sensors will be used in the study.

  • PDF