DOI QR코드

DOI QR Code

Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations

  • Received : 2023.04.24
  • Accepted : 2023.09.04
  • Published : 2023.12.25

Abstract

Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (Ministry of Science and ICT) (NRF-020M2D8A1045973).

References

  1. S. Machi, Trends for electron beam accelerator applications in industry, Rev. Accel. Sci. Technol. 4 (1) (2011) 1-10.  https://doi.org/10.1142/9789814383998_0001
  2. A.G. Chmielewski, M. Al-Sheikhly, A.J. Berejka, M.R. Cleland, M. Antoniak, Recent developments in the application of electron accelerators for polymer processing, Radiat. Phys. Chem. 94 (2014) 147-150.  https://doi.org/10.1016/j.radphyschem.2013.06.024
  3. S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G.J.N.I. Barrand, F. Behner, GEANT4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 250-303.  https://doi.org/10.1016/S0168-9002(03)01368-8
  4. I. Kawrakow, D.W.O. Rogers, The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport, Technical Report PIRS-701, National Research Council of Canada, Ottawa, Canada, 2000. 
  5. F. Salvat, J.M. Fernandez-Varea, J. Sempau, PENELOPE-2006: a code system for Monte Carlo simulation of electron and photon transport, in: Workshop Proceedings vol. 4, Nuclear Energy Agency, Organization for Economic Cooperation and Development, Barcelona, Spain, 2006, p. 7. No. 6222. 
  6. H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2) (2012) 161-176.  https://doi.org/10.5516/NET.01.2012.503
  7. C.J. Werner, J.S. Bull, C.J. Solomon, F.B. Brown, G.W. McKinney, M.E. Rising, D. A. Dixon, R.L. Martz, H.G. Hughes, L.J. Cox, A.J. Zukaitis, MCNP Version 6.2 Release Notes (No. LA-UR-18-20808), Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 2018. 
  8. O. Blunck, S. Leisegang, Zum energieverlust schneller elecktronen in dunner schichten, Z. Physik 128 (1950) 500-505.  https://doi.org/10.1007/BF01330032
  9. S.M. Seltzer, An Overview of ETRAN Monte Carlo Methods, Monte Carlo Transport of Electrons and Photons 38 (1988) 153-181.  https://doi.org/10.1007/978-1-4613-1059-4_7
  10. J.J. DeMarco, T.D. Solberg, R.E. Wallace, J.B. Smathers, A verification of the Monte Carlo code MCNP for thick target bremsstrahlung calculations, Med. Phys. 22 (1) (1955) 11-16.  https://doi.org/10.1118/1.597528
  11. D.A. Dixon, H.G. Hughes, A Complete Reporting of MCNP6 Validation Results for Electron Energy Deposition in Single-Layer Extended Media for Source Energies ≤1-MeV (No. LA-UR-16-22749), Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2016. 
  12. D.A. Dixon, H.G. Hughes, Validation of the MCNP6 electron-photon transport algorithm: multiple-scattering of 13- and 20-MeV electrons in thin foils, EPJ Web Conf. 153 (2017), 06021. 
  13. R. Jeraj, International conference on medical and biological engineering, September 14-19, 1997, in: P. Keall, P. Ostwald (Eds.), Comparison between MCNP, EGS4 and SMC on Electron Backscattering, Nice, 1997. 
  14. P. Libby, G. Hughes III, J. Goorley, Electron transmission and backscatter verification calculations using mcnp5, in: LAUR-03-5751, LANL, 2003. 
  15. S.T. Jung, S.H. Pyo, W.G. Kang, Y.R. Kim, J.K. Kim, C.M. Kang, Y.C. Nho, J.S. Park, Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam, Radiat. Phys. Chem. 186 (2021), 109506. 
  16. L. Mangiacapra, M. Ciappa, W. Fichtner, M. Stangoni, S. June Ott, Fine tuning of electron beam crosslinking of electrical cables and wires by three-dimensional Monte Carlo modeling, in: IEEE International Symposium on Electrical Insulation, IEEE, 2010, pp. 1-5. 
  17. R. Jeraj, P.J. Keall, P.M. Ostwald, Comparisons between MCNP, EGS4 and experiment for clinical electron beams, Phys. Med. Biol. 44 (3) (1999 Mar 1) 705. 
  18. M.R. Ay, M. Shahriari, S. Sarkar, M. Adib, H. Zaidi, Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNP4C, Phys. Med. Biol. 49 (21) (2004 Oct 8) 4897. 
  19. J. Kim, R.G. Moreira, R. Rivadeneira, M.E. Castell-Perez, Monte Carlo-based food irradiation simulator, J. Food Process. Eng. 29 (1) (2006 Feb) 72-88.  https://doi.org/10.1111/j.1745-4530.2006.00050.x
  20. J. Kim, R.G. Rivadeneira, M.E. Castell-Perez, R.G. Moreira, Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foods, J. Food Eng. 74 (3) (2006 Jun 1) 359-369.  https://doi.org/10.1016/j.jfoodeng.2005.03.008
  21. E. Chimbombi, R.G. Moreira, J. Kim, E.M. Castell-Perez, Prediction of targeted Salmonella enterica serovar typhimurium inactivation in fresh cut cantaloupe (Cucumis melo L.) using electron beam irradiation, J. Food Eng. 103 (4) (2011 Apr 1) 409-416.  https://doi.org/10.1016/j.jfoodeng.2010.11.011
  22. B. Han, J. Kim, W. Kang, J.S. Choi, K.Y. Jeong, Development of mobile electron beam plant for environmental applications, Radiat. Phys. Chem. 124 (2016 Jul 1) 174-178.  https://doi.org/10.1016/j.radphyschem.2015.12.014
  23. N.K. Kuksanov, S.N. Fadeev, Y.I. Golubenko, D.A. Kogut, A.I. Korchagin, A. V. Lavrukhin, P.I. Nemytov, R.A. Salimov, High Power ELV Accelerators for Industries Application, Proceeding of RuPAC-2010, Protvino, Russia, 2010, pp. 313-315.