• 제목/요약/키워드: MCMC Method

검색결과 103건 처리시간 0.022초

금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례 (A Case of Establishing Robo-advisor Strategy through Parameter Optimization)

  • 강민철;임규건
    • 한국IT서비스학회지
    • /
    • 제19권2호
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

Rare Disaster Events, Growth Volatility, and Financial Liberalization: International Evidence

  • Bongseok Choi
    • Journal of Korea Trade
    • /
    • 제27권2호
    • /
    • pp.96-114
    • /
    • 2023
  • Purpose - This paper elucidates a nexus between the occurrence of rare disaster events and the volatility of economic growth by distinguishing the likelihood of rare events from stochastic volatility. We provide new empirical facts based on a quarterly time series. In particular, we focus on the role of financial liberalization in spreading the economic crisis in developing countries. Design/methodology - We use quarterly data on consumption expenditure (real per capita consumption) from 44 countries, including advanced and developing countries, ending in the fourth quarter of 2020. We estimate the likelihood of rare event occurrences and stochastic volatility for countries using the Bayesian Markov chain Monte Carlo (MCMC) method developed by Barro and Jin (2021). We present our estimation results for the relationship between rare disaster events, stochastic volatility, and growth volatility. Findings - We find the global common disaster event, the COVID-19 pandemic, and thirteen country-specific disaster events. Consumption falls by about 7% on average in the first quarter of a disaster and by 4% in the long run. The occurrence of rare disaster events and the volatility of gross domestic product (GDP) growth are positively correlated (4.8%), whereas the rare events and GDP growth rate are negatively correlated (-12.1%). In particular, financial liberalization has played an important role in exacerbating the adverse impact of both rare disasters and financial market instability on growth volatility. Several case studies, including the case of South Korea, provide insights into the cause of major financial crises in small open developing countries, including the Asian currency crisis of 1998. Originality/value - This paper presents new empirical facts on the relationship between the occurrence of rare disaster events (or stochastic volatility) and growth volatility. Increasing data frequency allows for greater accuracy in assessing a country's specific risk. Our findings suggest that financial market and institutional stability can be vital for buffering against rare disaster shocks. It is necessary to preemptively strengthen the foundation for financial stability in developing countries and increase the quality of the information provided to markets.

Bayesian Parameter Estimation using the MCMC method for the Mean Change Model of Multivariate Normal Random Variates

  • Oh, Mi-Ra;Kim, Eoi-Lyoung;Sim, Jung-Wook;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제11권1호
    • /
    • pp.79-91
    • /
    • 2004
  • In this thesis, Bayesian parameter estimation procedure is discussed for the mean change model of multivariate normal random variates under the assumption of noninformative priors for all the parameters. Parameters are estimated by Gibbs sampling method. In Gibbs sampler, the change point parameter is generated by Metropolis-Hastings algorithm. We apply our methodology to numerical data to examine it.

Hybrid Self Organizing Map using Monte Carlo Computing

  • 전성해;박민재;오경환
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

Bayesian Analysis for Neural Network Models

  • Chung, Younshik;Jung, Jinhyouk;Kim, Chansoo
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.155-166
    • /
    • 2002
  • Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.

Variational Bayesian inference for binary image restoration using Ising model

  • Jang, Moonsoo;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.27-40
    • /
    • 2022
  • In this paper, the focus on the removal noise in the binary image based on the variational Bayesian method with the Ising model. The observation and the latent variable are the degraded image and the original image, respectively. The posterior distribution is built using the Markov random field and the Ising model. Estimating the posterior distribution is the same as reconstructing a degraded image. MCMC and variational Bayesian inference are two methods for estimating the posterior distribution. However, for the sake of computing efficiency, we adapt the variational technique. When the image is restored, the iterative method is used to solve the recursive problem. Since there are three model parameters in this paper, restoration is implemented using the VECM algorithm to find appropriate parameters in the current state. Finally, the restoration results are shown which have maximum peak signal-to-noise ratio (PSNR) and evidence lower bound (ELBO).

On-the-fly ionizing photon non-conservation correction for the Excursion-set reionization models

  • Park, Jaehong;Greig, Bradley;Mesinger, Andrei
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.30.3-30.3
    • /
    • 2021
  • In order to generate the 3D structure of the 21-cm signal during the reionization, semi-numerical simulations based on Excursion set formalism are broadly used. However, semi-numerical simulations in the realization of the 3D structure are known to be the ionizing photon non-conserving by the structure of the Excursion set approach. Recently, explicit photon conserving algorithms for semi-numerical simulations introduced, but they are still too slow when forward modelling the 21-cm signal with high-dimensional parameter spaces. Here, we introduce a new method for approximately correcting photon non-conservation, which can be applied on-the-fly. This method is tailored towards the efficient simulation and Bayesian inference with high-dimensional parameter space. Then, we investigate how large an impact that photon non-conservation has on astrophysical parameter inference by performing an MCMC analysis. We find that the ionizing escape parameter is deviated from the fiducial value by 2 sigma when we infer astrophysical parameters without this correction.

  • PDF

t-링크를 갖는 마코프 이항 회귀 모형을 이용한 인도네시아 어린이 종단 자료에 대한 베이지안 분석 (Bayesian inference of longitudinal Markov binary regression models with t-link function)

  • 심보현;정윤식
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.47-59
    • /
    • 2020
  • 본 논문에서는 마코프 이항 회귀 모형의 시차가 알려져 있거나 그렇지 않은 경우일 때, t-링크 함수를 갖는 종단적 마코프 이항 회귀 모형을 제시한다. 일반적으로, 이항 회귀 모형에서는 로직 모형이나 프로빗 모형이 주로 사용된다. t-링크 함수는 t 분포가 자유도가 커질수록 정규분포로 근사하기 때문에 프로빗 모형을 대신 더 많은 유연성을 위해 사용될 수 있다. 게다가 마코프 회귀모형은 종단 자료에 대해 사용될 수 있다. 우리는 마코프 회귀 모형의 시차를 결정하기 위해 베이지안 방법을 제시하고자 한다. 특히, 각 모델의 차수에 대해 알고 있는 경우에는 DIC를 기준으로 모델 비교를 실시하였다. 모델의 차수에 대해 모르는 경우에는 가능한 모델들의 사후 확률을 이용하였다. 복잡한 베이지안 계산을 해결하기 위하여 Albert와 Chib (1993), Kuo와 Mallick (1998)과 Erkanli 등 (2001)의 방법을 이용하여 모델을 재설정하였다. 제안하는 방법은 시뮬레이션 데이터와 Somer 등 (1984)에 의해 조사된 인도네시아 어린이 종단 데이터에 적용했다. 마코프 이항 회귀모형의 순서에 대해서 아는 경우와 모르는 경우를 각각 가정하여 최적의 모델을 알아보기 위해 MCMC 방법을 사용하였다. 또한, 매트로폴리스 해스팅 알고리즘의 수렴성을 점검하기 위해 Gelman과 Rubin의 진단을 이용했다.

베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에 서의 신뢰성 분석 (Reliability Analysis Under Input Variable and Metamodel Uncertainty Using Simulation Method Based on Bayesian Approach)

  • 안다운;원준호;김은정;최주호
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1163-1170
    • /
    • 2009
  • Reliability analysis is of great importance in the advanced product design, which is to evaluate reliability due to the associated uncertainties. There are three types of uncertainties: the first is the aleatory uncertainty which is related with inherent physical randomness that is completely described by a suitable probability model. The second is the epistemic uncertainty, which results from the lack of knowledge due to the insufficient data. These two uncertainties are encountered in the input variables such as dimensional tolerances, material properties and loading conditions. The third is the metamodel uncertainty which arises from the approximation of the response function. In this study, an integrated method for the reliability analysis is proposed that can address all these uncertainties in a single Bayesian framework. Markov Chain Monte Carlo (MCMC) method is employed to facilitate the simulation of the posterior distribution. Mathematical and engineering examples are used to demonstrate the proposed method.

폭염재해의 재해취약성분석 및 리스크 평가 비교 (Comparison of Disaster Vulnerability Analysis and Risk Evaluation of Heat Wave Disasters)

  • 설유정;김호용
    • 한국지리정보학회지
    • /
    • 제26권1호
    • /
    • pp.132-144
    • /
    • 2023
  • 최근 기후변화 기온상승 따른 폭염의 발생 빈도와 강도가 증가하고 있다. 이에 본 연구는 정부가 채택한 기후변화 재해취약성분석에 따른 폭염 재해취약성분석과 최근 IPCC에서 강조하고 있는 재해평가 방법인 리스크 평가라는 두 가지의 폭염재해 평가를 부산광역시 폭염을 대상으로 평가과정과 평가결과를 비교하고 시사점을 도출하고자하였다. 기후변화 재해취약성분석은 정부에서 마련한 매뉴얼과 가이드라인을 기반으로 평가하고 있다. 리스크 평가는 재해발생가능성과 그 영향의 곱으로 평가될 수 있으며, 재해발생가능성을 산출함에 있어서 사전 정보를 활용하여 사후확률을 추론하는 베이지안 추정법을 기반으로 한 마르코브체인 몬테카를로 시뮬레이션을 활용하여 평가하고 있다. 분석 결과 부산광역시를 대상으로 한 두 가지 평가 결과는 폭염 취약 지역의 공간분포에서 다소 차이가 발생하였다. 기후변화에 따른 재해 취약 지역을 적절하게 평가하기 위해서는 기후변화 재해취약성분석과 리스크 평가의 분석 과정 및 결과를 살펴보고 각각의 방법론에 대한 고려와 그에 맞는 대응을 마련해야하며, 이를 통해 장기적인 폭염 대응 방안을 마련할 수 있을 것으로 사료된다.