• Title/Summary/Keyword: MCG biomagnetic field

Search Result 2, Processing Time 0.02 seconds

Implementation of high-speed parallel data transfer for MCG signal acquisition (심자도 신호 획득을 위한 고속 병렬 데이터 전송 구현)

  • Lee, Dong-Ha;Yoo, Jae-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.444-447
    • /
    • 2004
  • A heart diagnosis system adopts hundreds of Superconducting Quantum Interface Device(SQUID) sensors for precision MCG(Magnetocardiogram) or MEG(Magnetoencephalogram) signal acquisitions. This system requires correct and real-time data acquisition from the sensors in a required sampling interval, i.e., 1 mili-second. This paper presents our hardware design and test results, to acquire data from 256 channel analog signal with 1-ksample/sec speed, using 12-bit 8-channel ADC devices, SPI interfaces, parallel interfaces, and 8-bit microprocessors. We chose to implement parallel data transfer between microprocessors as an effective way of achieving such data collection. Our result concludes that the data collection can be done in 250 ${\mu}sec$ time-interval.

  • PDF

A Low-noise Double Relaxation Oscillation SQUID Magnetometer for Measuring Magnetoencephalogram

  • 강찬석;이용호;권혁찬;김진목;윤병운
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.151-158
    • /
    • 2002
  • We developed a useful SQUID magnetometer for biomagnetic applications, magnetoencepha-logram(MEG) and magnetocardiogram(MCG), etc. The SQUIDs are based on Double Relaxation Oscillation SQUID(DROS). DROS consists of two SQUIDs(signal SQUID and reference SQUID) in series, and a relaxation circuit of an inductor and a resistor. Specially we used single reference junction instead of the reference SQUID. The SQUIDs are based on hysteretic $Nb/AlO_{x}$Nb junctions, fabricated by using a simple four level process. Because DROS magnetometer has large flux-to-voltage transfer coefficient, we can use simple flux-locked loop electronics fur SQUID operation. When the DROS magnetometer was operated inside a magnetically shielded room, its average magnetic field noise was about 3 (equation omitted) at 100 Hz. This noise level is low enough to measure biomagnetic fields. In this paper, we describe noise characteristics of DROS magnetometer, depending on the operation condition . .

  • PDF