• Title/Summary/Keyword: MCF 7

Search Result 950, Processing Time 0.028 seconds

Brazilin Inhibits of TPA-induced MMP-9 Expression Via the Suppression of NF-${\kappa}B$ Activation in MCF-7 Human Breast Carcinoma Cells

  • Kim, Byeong-Soo
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.209-214
    • /
    • 2010
  • Metastasis is the primary cause of from breast cancer mortality. Cell migration and invasion play important roles in neoplastic metastasis. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. NF-${\kappa}B$ is transcription factor important in the regulation of MMP-9, as the promoter of MMP-9 gene contains binding sites for NF-${\kappa}B$. Brazilin, an active component of sappan wood (Caesalpinia sappan), decreases TPA-induced MMP-9 expression and invasion in MCF-7 cells. Also, brazilin suppressed NF-${\kappa}B$ activation in TPA-treated MCF-7 cells. Taken together, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by brazilin is mediated by the suppression of the NF-${\kappa}B$ pathway in MCF-7 cells. This result suggest brazilin provide a potential therapeutic app roach for the treatment of breast cancer.

Cytotoxic Effects of Decursin from Angelica gigas Nakai in Human Cancer Cells (당귀로부터 정제한 Decursin의 인체암세포주에 대한 세포독성)

  • Park, Kyung-Wuk;Choi, Sa-Ra;Shon, Mi-Yae;Jeong, Il-Yun;Kang, Kap-Suk;Lee, Sung-Tae;Shim, Ki-Hwan;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.11
    • /
    • pp.1385-1390
    • /
    • 2007
  • Anticarcinogenic-active compound was isolated and purified from Angelica gigas Nakai. The compound was identified as decursin ($C_{19}H_{20}O_5$; molecular weight 328) by mass, IR spectrophotometry $^1H-NMR$ and $^{13}C-NMR$. The proliferation decreased in a dose dependant fashion in the MCF-7 cells treated with decursin for 24 hours over the concentration of $20{\mu}g/mL$. The $IC_{50}$ value of the decursin treatment for 24 hours were 31.04, 33.60, 27,24, $20.45{\mu}g/mL$ in the SW480, 293, HepG2 and MCF-7 cells, respectively, The growth inhibitory effect was stronger in the MCF-7 cells compared to other cells including 293 of human normal cells. The chromatin condensation, apoptotic body formation and DNA fragmentation were examined in the cells treated with decursin. These results suggest that decursin from Angelica gigas Nakai inhibited the growth through apoptosis in MCF-7 cells.

Molecular Mechanism of Crocin Induced Caspase Mediated MCF-7 Cell Death: In Vivo Toxicity Profiling and Ex Vivo Macrophage Activation

  • Bakshi, Hamid A;Hakkim, Faruck Lukmanul;Sam, Smitha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1499-1506
    • /
    • 2016
  • Background: Crocus sativus and its major constituent crocin are well established to have anti-cancer properties in breast cancer cells (MCF-7). However the role of C. sativus extract (CSE) and crocin on caspase signaling mediated MCF-7 cell death at molecular level is remains unclear. In this study, we tried to unravel role of CSE and crocin on caspase mediated MCF-7 cells death and their in vivo preclinical toxicity profiling and immune stimulatory effect. Materials and Methods: CSE extract was fractionated by HPLC and crocin was isolated and characterized by NMR, IR, and MS. MCF-7 cells were treated with both CSE and crocin and expression of Bcl-2 and Bax was assessed after 24 and 36 hours. Furthermore, caspase 3, caspase 8 and caspase 9 expression was determined by Western blotting after 24 hours of treatment. DNA fragmentation analysis was performed for genotoxicity of CSE and crocin in MCF-7 cells. The in vivo toxicity profile of CSE (300 mg/kg of b.wt) was investigated in normal Swiss albino mice. In addition, peritoneal macrophages were collected from crocin (1, 1.5 and 2 mg/kg body weight) treated mice and analyzed for ex vivo yeast phagocytosis. Results: Immunoblot analysis revealed that there was time dependent decline in anti-apoptotic Bcl-2 with simultaneous upregulation of Bax in CSE and crocin treated MCF-7 cells. Further CSE and crocin treatment downregulated caspase 8 and 9 and cleaved the caspase 3 after 24 hours. Both CSE and crocin elicited considerable DNA damage in MCF-7 cells at each concentration tested. In vivo toxicity profile by histological studies revealed no observable histopathologic differences in the liver, kidney, spleen, lungs and heart in CSE treated and untreated groups. Crocin treatment elicited significant dose and time dependent ex vivo yeast phagocytosis by peritoneal macrophages. Conclusions: Our study delineated involvement of pro-apoptotic and caspase mediated MCF-7 cell death by CSE and crocin at the molecular level accompanied with extensive DNA damage. Further we found that normal swiss albino mice can tolerate the maximum dose of CSE. Crocin enhanced ex vivo macrophage yeast phagocytic ability.

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung;Ryoo, In-geun;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Apoptotic Effects of Resveratrol via mTOR and COX-2 Signal Pathways in MCF-7 Breast Cancer Cells (MCF-7 유방암 세포에서 mTOR-COX-2 신호경로를 통한 resveratrol의 apoptosis 효과)

  • Lee, Sol-Hwa;Lee, Hye-Yeon;Park, Song-Yi;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1288-1294
    • /
    • 2011
  • Resveratrol, a kind of phytochemical, is presented in grape skins. Resveratorl exerts antiproliferative, anti-cancer and pro-apoptotic activities in cancer cells. Mammalian target of rapamycin (mTOR) is a critical regulator of cellular growth and proliferation, and it is known to be a strategic target for anti-cancer therapeutic uses. mTOR is a major downstream of the PI3K/Akt pathway, which is activated in various cancer cells. It also plays an important role in the survival, proliferation and angiogenesis of cells. Cyclooxygenase-2 (COX-2) is an important protein that mediates inflammatory processes. It plays an important role in various tumors by affecting cell proliferation, mitosis, apoptosis and angiogenesis. In this study, we have investigated the effects of resveratrol on apoptosis through mTOR and COX-2 expression in MCF-7 breast cancer cells. The treatment of resveratrol with different concentrations inhibited proliferation of MCF-7. The data showed that resveratrol induced apoptotic cell death of cancer cells and decreased mTOR and COX-2 expression. These results suggest that resveratrol induces apoptosis of MCF-7 breast cancer cells by inhibiting mTOR and COX-2 expression.

Anti-Cancer Effect of 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide in MCF-7 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.10.1-10.7
    • /
    • 2012
  • Objectives: In recent years, a number of structurally diverse Histone deacetylase (HDAC) inhibitors have been identified and these HDAC inhibitors induce growth arrest, differentiation and/or apoptosis of cancer cells in vitro and in vivo. This study aimed at investigating the antitumor activity of newly synthesized HDAC inhibitor, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide (IN-2001) using human breast cancer cells. Methods: We have synthesized a new HDAC inhibitor, IN-2001, and cell proliferation inhibition assay with this chemical in estrogen receptor-positive human breast cancer MCF-7 cells. Cell cycle analysis on MCF-7 cells treated with IN-2001 was carried out by flow cytometry and gene expression was measured by RT-PCR. Results: In MCF-7 cells IN-2001 showed remarkable anti-proliferative effects in a dose- and time-dependent manner. In MCF-7 cells, IN-2001 showed a more potent growth inhibitory effect than that of suberoylanilide hydroxamic acid. These growth inhibitory effects were related to the cell cycle arrest and induction of apoptosis. IN-2001 showed accumulation of cells at $G_2$/M phase and of the sub-$G_1$ population in a time-dependent manner, representing apoptotic cells. IN-2001-mediated cell cycle arrest was associated with HDAC inhibitor-mediated induction of CDK inhibitor expression. In MCF-7 cells, IN-2001 significantly increased $p21^{WAF1}$ expression. Conclusions: In summary, cyclin-dependent kinase (CDK) induced growth inhibition, possibly through modulation of cell cycle and apoptosis regulatory proteins, such as CDK inhibitors, and cyclins. Taken together, these results provide an insight into the utility of HDAC inhibitors as a novel chemotherapeutic regime for hormone-sensitive and insensitive breast cancer.

Effects of Triterpenoids from Luvunga scandens on Cytotoxic, Cell Cycle Arrest and Gene Expressions in MCF-7 Cells

  • Taher, Muhammad;Al-Zikri, Putri Nur Hidayah;Susanti, Deny;Arief Ichwan, Solachuddin Jauhari;Rezali, Mohamad Fazlin
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2016
  • Plant-derived triterpenoids commonly possesses biological properties such as anti-inflammatory, antimicrobial, anti-viral and anti-cancer. Luvunga scandens is one of the plant that produced triterpenoids. The aims of the study was to analyze cell cycle profile and to determine the expression of p53 unregulated modulator of apoptosis (PUMA), caspase-8 and caspase-9 genes at mRNA level in MCF-7 cell line treated with two triterpenoids, flindissol (1) and 3-oxotirucalla-7,24-dien-21-oic-acid (2) isolated from L. scandens. The compounds were tested for cell cycle analysis using flow cytometer and mRNA expression level using quantitative RT-PCR. The number of MCF-7 cells population which distributed in Sub G1 phase after treated with compound 1 and 2 were 7.7 and 9.3% respectively. The evaluation of the expression of genes showed that both compounds exhibited high level of expression of PUMA, caspase-8 and caspase-9 as normalized to ${\beta}-actin$ via activation of those genes. In summary, the isolated compounds of L. scandens plant showed promising anticancer properties in MCF-7 cell lines.

Glehnia littoralis Root Extract Induces G0/G1 Phase Cell Cycle Arrest in the MCF-7 Human Breast Cancer Cell Line

  • de la Cruz, Joseph Flores;Vergara, Emil Joseph Sanvictores;Cho, Yura;Hong, Hee Ok;Oyungerel, Baatartsogt;Hwang, Seong Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8113-8117
    • /
    • 2016
  • Glehnia littoralis (GL) is widely used as an oriental medicine for cough, fever, stroke and other disease conditions. However, the anti-cancer properties of GL on MCF-7 human breast cancer cells have not been investigated. In order to elucidate anti-cancer properties and underlying cell death mechanisms, MCF-7cells ($5{\times}10^4/well$) were treated with Glehnia littoralis root extract at 0-400 ug/ml. A hot water extract of GL root inhibited the proliferation of MCF-7 cells in a dose-dependent manner. Analysis of the cell cycle after treatment of MCF-7 cells with increasing concentrations of GL root extract for 24 hours showed significant cell cycle arrest in the G1 phase. RT-PCR and Western blot analysis both revealed that GL root extract significantly increased the expression of p21 and p27 with an accompanying decrease in both CDK4 and cyclin D1. Our reuslts indicated that GL root extract arrested the proliferation of MCF-7 cells in G1 phase through inhibition of CDK4 and cyclin D1 via increased induction of p21 and p27. In summary, the current study showed that GL could serve as a potential source of chemotherapeutic or chemopreventative agents against human breast cancer.

MiR-886-5p Inhibition Inhibits Growth and Induces Apoptosis of MCF7 Cells

  • Zhang, Lei-Lei;Wu, Jiang;Liu, Qiang;Zhang, Yan;Sun, Zhu-Lei;Jing, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1511-1515
    • /
    • 2014
  • Background and Aims: To explore the molecular mechanisms of miR-886-5p in breast cancer., we examined roles in inhibiting growth and migration of MCF-7 cells. Methods: MiR-886-5p mimics and inhibitors were used to express or inhibit MiR-886-5p, respectively, and MTT and clone formation assays were used to determine the survival and proliferation. Hoechst 33342/ PI double staining was applied to detect apoptosis. The expression of caspase-3, caspase-8, caspase-9, MT1-MMP, VEGF-C and VEGF-D was detected by Western blotting, and the levels of MMP2 and MMP9 secreted from MCF-7 cells were assessed by ELISA. MCF-7 cell migration was determined by wound healing and Transwell assays. Results: We found that the growth of MCF-7 cells was inhibited upon decreasing miR-886-5p levels. Inhibiting miR-866-5p also significantly induced apoptosis and decreased the migratory capacity of these cells. The expression of VEGF-C, VEGF-D, MT1-MMP, MMP2, and MMP9 was also found to be decreased as compared to controls. Conclusions: Our data show that downregulation of miR-886-5p expression in MCF-7 cells could significantly inhibit cell growth and migration. This might imply that inhibiting miR-886-5p could be a therapeutic strategy in breast cancer.

Anti-cancer Effects of Dendropanax Morbifera Extract in MCF-7 and MDA-MB-231 Cells (황칠나무 줄기 추출물의 MCF-7과 MDA-MB-231 유방암 세포주에 대한 세포증식억제 효과)

  • Im, Kyu-Jung;Jang, Sae-Byul;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.28 no.2
    • /
    • pp.26-39
    • /
    • 2015
  • Objectives : Dendropanax morbifera is known as a tree that has been used in traditional medicine for various diseases. However, its biological activities in cancer have not yet been clearly elucidated. In this study, we investigated the anti-cancer effects of water extract of Dendropanax morbifera (DP) on 2 human breast cancer cell lines (estrogen dependent MCF-7 and estrogen independent MDA-MB-231). Methods : The MTT assay and flow cytometry were used to assess cell proliferation, along with cell cycle analysis. Nitric oxide production was detected by Griess assay. The expression of apoptosis related gene was assessed by quantitative real-time PCR. Results : Our data revealed that DP inhibits the cell growth in a dose dependent manner (0, 50, 100, 250, and 500 μg/ml) of both estrogen independent MDA-MB-231 and estrogen dependent MCF-7 breast cancer cells. Also, LPS induced nitric oxide production was significantly reduced by DP. Cell cycle analysis showed an increased G1 phase in the MCF-7 cell and G2/M phase in the MDA-MB-231 cell. DP decreased mRNA expression of apoptotic suppressor gene Bcl-xL, and increased mRNA expression of pro-apoptotic genes. DP increased mRNA expression of p21, and Rip1 in both cell. And DP decreased mRNA expression of survivin in the MCF-7 cell. Conclusions : Taken together, these results indicate that DP extract are source of anti-cancer potential and could be developed botanical drug.