• Title/Summary/Keyword: MC3T3-E1 Cells

Search Result 204, Processing Time 0.047 seconds

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells

  • Kim, Hak Jun;Shim, Hye Eun;Lee, Jun Hyuck;Kang, Yong-Cheol;Hur, Young Baek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1989-1996
    • /
    • 2015
  • Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1℃/min in a -80℃ freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway

  • Gong, Kai;Qu, Bo;Wang, Cairu;Zhou, Jingsong;Liao, Dongfa;Zheng, Wei;Pan, Xianming
    • Molecules and Cells
    • /
    • v.40 no.6
    • /
    • pp.393-400
    • /
    • 2017
  • Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by lack of insulin and high glucose levels. T2DM can cause bone loss and fracture, thus leading to diabetic osteoporosis. Promoting osteogenic differentiation of osteoblasts may effectively treat diabetic osteoporosis. We previously reported that Sirtuin 1 (Sirt1), a $NAD^+$-dependent deacetylase, promotes osteogenic differentiation through downregulation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. We also found that miR-132 regulates osteogenic differentiation by downregulating Sirt1 in a $PPAR{\beta}/{\delta}$-dependent manner. The ligand-activated transcription factor, $PPAR{\alpha}$, is another isotype of the peroxisome proliferator-activated receptor family that helps maintain bone homeostasis and promot bone formation. Whether the regulatory role of $PPAR{\alpha}$ in osteogenic differentiation is mediated via Sirt1 remains unclear. In the present study, we aimed to determine this role and the underlying mechanism by using high glucose (HG) and free fatty acids (FFA) to mimic T2DM in MC3T3-E1 cells. The results showed that HG-FFA significantly inhibited expression of $PPAR{\alpha}$, Sirt1 and osteogenic differentiation, but these effects were markedly reversed by $PPAR{\alpha}$ overexpression. Moreover, siSirt1 attenuated the positive effects of $PPAR{\alpha}$ on osteogenic differentiation, suggesting that $PPAR{\alpha}$ promotes osteogenic differentiation in a Sirt1-dependent manner. Luciferase activity assay confirmed interactions between $PPAR{\alpha}$ and Sirt1. These findings indicate that $PPAR{\alpha}$ promotes osteogenic differentiation via the Sirt1-dependent signaling pathway.

The Effects of Static Magnetic Field and Pulsed Electromagnetic Field on Alkaline Phosphatase and DNA synthetic Activity of ME3T3-E1 Cells (정자기장과 맥동전자기장이 MC3T3-E1 세포의 ALP 및 DNA 활성도에 미치는 영향)

  • Son, Jeong-Hee;Bae, Seong-Min;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.27 no.4 s.63
    • /
    • pp.623-632
    • /
    • 1997
  • The purpose of this study was to evaluate the effects of magnetic field on cellular activity of MC3T3-E1 cells. The cellular activity was monitored by alkaline phosphatase and DNA synthetic activity in control, static magnetic field and pulsed electromagnetic field groups. A static magnetic field was applied to the cell by placing one, two, three, foue, and five samarium-cobalt magnets above and below each cell plate for 24hours per day. A pulsed electromagnetic field with a frequency of 100 herz was applied for 10 hours per day. After 10 days of magnetic field exposure, there were increase of alkaline phosphatase activity in static magnetic field groups consisted of one, two and three magnetic groups. Alkaline phosphatase activities were not significantly increased in four and five magnetic groups. Application of pulsed electromagnetic field did not result in significant increase in alkaline phosphatase activity compared to control. DNA synthetic activity in both static and pulsed electromagnetic field group were not significantly different from that in control group. The result of this study suggest that magnetic field could have effect on the metabolism of bone cells related to the cellular metabolic process.

  • PDF

Effects of irradiation on the mRNA expression of the osteocalcin and osteopontin in MC3T3-E1 osteoblastic cell line (MC3T3-E1 조골세포주의 osteocalcin과 osteopontin mRNA 발현에 미치는 방사선의 영향)

  • Cho Su-Beom;Lee Sang-Rae;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.33 no.3
    • /
    • pp.179-185
    • /
    • 2003
  • Purpose: To investigate the effects of irradiation on the phenotypic expression of the MC3T3-El osteoblastic cell line, particularly on the expression of osteocalcin and osteopontin. Materials and Methods: Cells were irradiated with a single dose of 0.5, 1,4, and 8 Gy at a dose rate of 5.38 Gy/min using a cesium 137 irradiator. After the specimens were harvested, RNA was extracted on the 3rd, 7th, 14th, and 21st day after irradiation. The RNA strands were reverse-transcribed and the resulting cDNAs were subjected to amplification by PCR. Results: The irradiated cells demonstrated a dose-dependent increase in osteocalcin and a dose-dependent decrease in osteopontin mRNA expression compared with the non-irradiated control group, The amount of osteocalcin mRNA expression decreased significantly at the 3rd day after irradiation of 0,5, 1,4, and 8 Gy, and also decreased significantly at the 3rd, 14th, and 21 st day after irradiation in the 8 Gy exposed group compared with the control group, The degree of osteopontin mRNA expression increased significantly at the 7th day after irradiation of 0,5, 1,4, and 8Gy, Conclusion: These results showed that each single dose of 0,5, 1, 4, and 8 Gy influenced the mRNA expression of osteocalcin and osteopontin associated with the calcification stage of osteoblastic cells, suggesting that each single dose affected bone formation at the cell level.

  • PDF

Effects of irradiation on TGF-${\beta}_1$ mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line (방사선조사가 MC3T3-E1 골모세포주의 TGF-${\beta}_1$ mRNA 발현과 석회화결절 형성에 미치는 영향)

  • Song, Ju-Seop;Kim, Kyoung-A;Koh, Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.125-132
    • /
    • 2008
  • Purpose : To investigate the effects of irradiation on transforming growth factor ${\beta}_1$ (TGF-${\beta}_1$) mRNA expression and calcific nodule formation in MC3T3-E1 osteoblastic cell line. Materials and Methods : Cells were cultured in alpha-minimum essential medium ($\alpha$-MEM) supplemented with 10% fetal bovine serum and antibiotics. When the cells reached the level of 70-80% confluence, culture media were changed with $\alpha$-MEM supplemented with 10% FBS, 5 mM $\beta$-glycerol phosphate, and $50\;{\mu}g/mL$ ascorbic acid. Thereafter the cells were irradiated with a single dose of 2, 4, 6, 8 Gy at a dose rate of 1.5 Gy/min. The expression pattern of TGF-${\beta}_1$ mRNA, calcium content and calcific nodule formation were examined on day 3, 7, 14, 21, 28, respectively, after the irradiation. Results : The amount of TGF-${\beta}_1$ mRNA expression decreased significantly on day 7 after irradiation of 4, 6, 8 Gy. It also decreased on day 14 after irradiation of 6, 8 Gy. and decreased on day 21 after irradiation of 8 Gy. The amount of calcium deposition decreased significantly on day 7 after irradiation of 4, 8 Gy (P < 0.01) and showed a decreased tendency on day 14, 21 after irradiation of 4, 6, 8 Gy. The number of calcific nodules was decreased on day 7 after irradiation of 4, 8 Gy. Conclusion: Irradiation with a single dose of 4, 6, 8 Gy influences negatively the bone formation at the molecular level by affecting the TGF-${\beta}_1$ mRNA expression that was associated with proliferation and the production of extracellular matrix in MC3T3-E1 osteoblastic cell line.

  • PDF

Effects of ENA-A(ENA actimineral resource A) Ion Water on the Activity and Differentiation of MC3T3-E1 Osteoblastic cell (ENA-A(ENA actimineral resource A) 이온수가 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Lee, Ji-Won;Jeon, Sang-Kyung;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.925-931
    • /
    • 2006
  • Culture of osteoblast is extremely valuable in analyzing biological features that are specific to bone. ENA-A, ENA actimineral resource A, is a seaweed origin alkaline water. To investigate the bioactivity of ENA which act on bone metabolism, we studied the effects of a ENA on the activity of osteoblast MC3T3-E1 cells. ENA (1, 2, 4%) dose-dependently increased survival (p<0.05) and alkaline phosphatase activity (p<0.05) on MC3T3-E1 cell. And examined histochemistry and nodule formation according to the time course. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation by using RT-PCR. This study suggest that ENA may promote the function of osteoblastic cells and play an important role in bone formation.

Effects of Scutellaria radix Extract on Osteoblast Differentiation and Osteoclast Formation (황금 추출물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Shin, Jeong-Min;Park, Chan-Kyung;Shin, Eun-Ju;Jo, Tae-Hyung;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.674-679
    • /
    • 2008
  • Scutellaria radix (SR) has been utilized as a traditional medicine for a variety of diseases including Rheumatoid arthritis and its major flavonoids - baicalein, baicalin, and wogonin - have been reported to exert beneficial health effects, including anti-bacterial, anti-viral, anti-inflammatory, and free-radical scavenging. However, the mechanisms underlying this effect remain poorly understood. The principal objective of this study was to determine the effect of SR on osteoblast and osteoclast cells. SR extract was prepared using 70% ethanol solvent. Osteoblastic MC3T3-E1 cells and osteoclast precursor Raw 264.7 macrophage cells were utilized. SR extract increased MC3T3-E1 cell proliferation and stimulated alkaline phosphatase activity dose-dependently, 152.0% of the control at concentration $1{\mu}g/mL$. Additionally, SR extract ($1{\mu}g/mL$) stimulated Bone nodule formation activity in MC3T3-E1 cells, approximately 223.3% of the control, 20 days after the exposure. In addition, SR extract significantly reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from Raw 264.7 cells. In conclusion, SR extract stimulates the proliferation and bioactivities of boneforming osteoblasts, and inhibits the activities of bone-resorbing osteoclasts to a certain degree.

THE EFFECT OF STATIC MAGNETIC FIELDS ON MOLECULAR AND CELLULAR ACTIVITIES (정자기장이 효소와 세포 활성에 미치는 영향)

  • Park, Jae-Gu;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.27 no.6 s.65
    • /
    • pp.929-941
    • /
    • 1997
  • Optimal force for orthodontic treatment is the force that produces a rapid rate of tooth movement without discomfort to the Patient or ensuing tissue damage. Recently considerable interest has been generated in the application of magnets as a way to obtain an optimal force. The purpose of the present study was to investigate the effect of static magnetic fields of Sm-Co magnets on molecular and cellular activities. The distance of erythrocyte sedimentation was measured directly, and the activities and the syntheses of $Fe^{2+}$-related enzymes (catalase and NO synthase) and non $Fe^{2+}$-related enzyme (lactic dehydrogenase) were assayed by the spectrophotometer. The growth and the proliferation of osteoblast-like cells $MC_3T_3-E_1$ were determined by the crystal violet staining and the ${^3}H$-thymidine incorporation. The erythrocytes were exposed to the pole face flux density of 1,400 G (gauss), and the enzymes and osteoblast-like cells $MC_{3}T_3-E_1$ were exposed to the flux density of 7,000 G. The results obtained were as follows: 1. The distance of sedimentation of erythrocyte was not affected by the static magnetic fields. 2. The activities of catalase and lactic dehydrogenase were not affected by the static magnetic fields. 3. The intracellular syntheses of NO synthase and lactic dehydrogenase were not affected by the static magnetic fields. 4. The growth and the proliferation of cultured osteoblast-like cells $MC_{3}T_3-E_1$ were not affected by the static magnetic fields. These results suggested that the molecular and cellular activities were not significantly influenced by the static magnetic fields.

  • PDF