• Title/Summary/Keyword: MBL ($Metallo-{\beta}-lactamase$) gene

Search Result 9, Processing Time 0.023 seconds

Characteristics and Antibiotic Susceptibility of Imipenem-Resistant Clinical Isolates Producing Carbapenemase (Carbapenemase를 생산하는 imipenem 내성 세균의 특성 및 항생제 감수성)

  • Choe, Han-Na;Park, Chul;Kim, Hyung-Rak;Baik, Keun-Sik;Kim, Se-Na;Seong, Chi-Nam
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1214-1220
    • /
    • 2010
  • Imipenem-resistant bacteria were isolated from clinical specimens taken from hospitalized patients in Suncheon, Korea. Fifty-four isolates were phylogenetically analyzed based on 16S rRNA gene and gyrB gene sequence comparisons. Isolates were affiliated with Pseudomonas aeruginosa (30 strains; 55.6%), Acinetobacter baumannii (21; 38.9%), Enterobacter hormaechei (2) and Pseudomonas putida (2). Twenty-two isolates produced metallo-$\beta$-lactamase (MBL); 12 Acinetobacter baumannii strains, 7 Pseudomonas aeruginosa strains, 2 P. putida strains and 1 Enterobacter hormaechei strain. Antibiotic susceptibility of the isolates was determined using the disc diffusion method and Vitek system. Strains producing metallo-$\beta$-lactamase (type IMP & VIM) were more resistant to antibiotics ceftazidime, aztreonam, amikacin and gentamicin than to strains producing OXA and SHV type of $\beta$-lactamase.

Molecular Epidemiology of Metallo-β-lactamase Producing Pseudomonas aeruginosa Clinical Isolates (임상에서 분리된 Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 분자역학)

  • Choi, Myung-Won
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1268-1276
    • /
    • 2012
  • The emergence and dissemination of carbapenem-resistant bacteria have resulted in limitations of antibiotic treatment and potential outbreaks of metallo-${\beta}$-lactamase (MBL) producing Pseudomonas aeruginosa resistant to carbapenems. In this study, we conducted molecular characterization of the MBL genes of the ${\beta}$-lactam drug-resistant P. aeruginosa and prepared basic data for treatment and prevention of proliferation of antimicrobial-resistant bacterial infections. Forty-two P. aeruginosa isolates of 254 were resistant to imipenem or meropenem. Among the 42 isolates, 28 isolates were positive for the Hodge test, and 23 isolates were positive for the EDTA-disk synergy test (EDST). MBLs were detected in 59.5% (25/42) of P. aeruginosa isolates. Eight isolates harbored $bla_{IMP-6}$, whereas 17 isolates harbored $bla_{VIM-2}$. The $bla_{IMP-6}$ gene was in a class 1 integron containing five gene cassettes: $bla_{IMP-6}$, qac, aacA4, $bla_{OXA-1}$, and aadA1. Some strains that produce IMP-6 and VIM-2 showed epidemiological relationships. The $bla_{IMP-6}$ gene in carbapenem-resistant P. aeruginosa showed an identical pattern to a gene cassette that was reported at a hospital in Daegu, Korea. Therefore, MBL-producing P. aeruginosa is already endemic in the community. We are concerned that the existence of carbapenem-resistant bacteria containing the blaMBL gene may increase pressure on antibiotic selection when treating infections. We believe that we should select appropriate antibiotics based on the antibiotic susceptibility test and continue the research to prohibit the emergence and spread of antibiotics resistant bacteria.

Prevalence and Diversity of MBL Gene-Containing Integrons in Metallo-β-Lactamase (MBL)-Producing Pseudomonas spp. Isolates Disseminated in a Korean Hospital

  • Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.321-330
    • /
    • 2019
  • Carbapenem is recently considered as the last resort of the therapeutics for gram negative bacterial infection. Increasing of organisms producing metallo-β-lactamase (MBL), we have difficulty in choosing the antimicrobial agents. Among 345 clinical isolates of Pseudomonas spp., 61 isolates (17.7%) were positive for the modified imipenem or meropenem-Hodge test and 55 isolates (15.9%) were positive for the imipenem-EDTA + SMA double disk synergy test (DDS). PCR and sequencing of blaVIM-2-allele and blaIMP-1-allele showed that 17 isolates of Pseudomonas aeruginosa, 9 isolates of Pseudomonas taiwnensis and 2 Pseudomonas plecoglossicida had blaVIM-2, and 22 isolates of P. aeruginosa and one Pseudomonas otitidis had blaIMP-6. These MBL genes were all in class 1 integron. The size of class 1 integron with blaVIM-2 ranged from 3.5 kb to 5.5 kb in clinical isolates of Pseudomonas spp. including P. aeruginosa. blaVIM-2 was most often located first in the class 1 integron, sometimes in the second or third position, and these integrons often had aacA4 or aadA1. Strict infection control measures are needed to more effectively prevent further spread of these MBL-producing Pseudomonas spp. In addition, MBL-producing Pseudomonas spp. is expected to continue to spread in various countries and regions.

Genetic Diversity of Metallo-β-lactamase Genes of Chryseobacterium indologenes Isolates from Korea

  • Yum, Jong Hwa
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.275-281
    • /
    • 2019
  • This study was performed to characterize the chromosomal metallo-${\beta}$-lactamases (MBLs) of Chryseobacterium indologenes isolated from Korea and to propose a clustering method of IND MBLs based on their amino acid similarities. Chromosomal MBL genes were amplified by PCR from 31 clinical isolates of E. indologenes. Nucleotide sequencing was performed by the dideoxy chain termination method using these PCR products. Antimicrobial susceptibilities were determined by the agar dilution method. PCR experiments showed that all 31 E. indologenes isolates contained all $bla_{IND}$ genes. DNA sequence analysis revealed that E. indologenes isolates possessed ten types of $bla_{IND}$ gene, including seven novel variants ($bla_{IND-8}$ to $bla_{IND-14}$). The most common combination of MBL was IND-2 (n = 18). Minimum inhibitory concentrations of imipenem and meropenem for the isolates harboring novel IND MBLs were ${\geq}16{\mu}g/mL$. IND MBLs were grouped in three clusters, based on amino acid similarities.

In vitro Antimicrobial Combination Therapy in Metallo-β-lactamase Producing Pseudomonas aeruginosa (Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 시험관내 항균제 병합요법에 대한 연구)

  • Hong, Seung-Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.3
    • /
    • pp.166-172
    • /
    • 2006
  • Metallo-${\beta}$-lactamase (MBL) can hydrolyze all ${\beta}$-lactams except monobactams and frequently coexists with various antibiotic resistance genes such as aminoglycoside resistance, sulfonamide resistance gene, etc. Therefore, the effective antibiotics against infections by these bacteria are markedly limited or can't even be found. We tried to search in-vitro antimicrobial combinations with synergistic effects for a VIM-2 type MBL producing Pseudomonas aeruginosa, isolated from clinical specimen. On the selection of antibiotic combinations with synergistic effects, we performed a one disk synergy test, modified Pestel's method, in agar without aztreonam (AZT). The bacteriostatic synergistic effects of this tests were scored as $S_1$ (by susceptibility pattern in agar without antibiotics), $S_2$ (by the change of susceptibility in agar with or without antibiotics) and $S_3$ ($S_1$ + $S_2$) and was classified into weak (1 point), moderate (2 points) and strong (3 points) by $S_3$ score. Subsequently, we carried out the time-killing curve for the antibiotic combinations with the strong synergistic bacteriostatic effect. One VIM-2 type MBL producing P. aeruginosa confirmed by the PCR showed all resistance against all ${\beta}$-lactams except AZT, aminoglycoside and ciprofloxacin. In the one disk synergy test, this isolate showed a strong bacteriostatic synergistic effect for the antibiotic combination of AZT and piperacillin-tazobactam (PIP-TZP) or AZT and amikacin (AN). On the time-killing curve after six hours of incubation, the colony forming units (CFUs/mL) of this bacteria in the medium broth with both combination antibiotics were decreased to 1/18.7, 1/17.1 of the least CFUs of each single antibiotics. The triple antibiotic combination therapy including AZT, PIP-TZP and AN was shown to be significantly synergistic after 8 hrs of exposure. In a VIM-2 MBL producing P. aeruginosa with susceptibility for AZT, the triple antibiotic combination therapy including AZT, PIP-TZP and AN may be considered as an alternative antibiotics modality against the infection by some MBL type. But the antimicrobial combination therapy for many more MBL producing isolates is essential to know as soon as possible for the selection of effective treatment against the infection by this bacteria.

  • PDF

Analysis of Integron-Associated Multi-Drug Resistance of Acinetobacter baumannii Isolated in Korea (국내에서 분리된 Acinetobacter baumannii의 Integron과 연관된 다제내성 분석)

  • Kim, Seong-Hwan;Choi, Ji-Hye;Park, Eun-Jin;Suh, In-Won;Son, Seung-Yeol
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.303-307
    • /
    • 2010
  • Acinetobacter baumannii 1625, a clinical isolate identified by Vitek and 16S rDNA sequence, showed an extended resistance to most ${\beta}$-lactams including imipenem, kanamycin, gentamicin, tobramycin, and cephalosporins of the third and fourth generations, and produced metallo-${\beta}$-lactamase (MBL) of IMP-1 type which is rare in Korea. The isolate contained a class 1 integron of about 2.5 kb in size and the integron included accA4 (aminoglycoside resistance gene), $bla_{IMP-1}$ (carbapenem resistance gene), and $bla_{OXA-2}$ (extended-spectrum ${\beta}$-lactam resistance gene) gene cassettes in order. The coexistence of IMP-1 type and OXA-2 type ${\beta}$-lactamase gene cassettes in an integron has not been reported in Korea. The transformed integron rendered the E. coli transformant resistant more than eight folds against imipenem, ampicilin, piperacillin, cefazolin, cefoperazone, and aztreonam comparing to the reference strain. This study clearly showed that the extended multi-drug resistance of A. baumannii 1625 was mainly due to the integron.

The Characteristics of Imipenem-Resistant Bacteria Isolated from One Patient (한 환자에게서 분리된 Imipenem 내성세균들의 특성)

  • Park, Chul;Lee, Hyeok-Jae;Seo, Min-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.413-419
    • /
    • 2017
  • Four imipenem-resistant bacteria were isolated from the clinical specimens of a patient with pneumonia. To identify the isolates, we used the GN card of Vitek II system and performed a phylogenetic analysis based on 16S rRNA gene sequence. The isolates were identified as P. aeruginosa (2 strains), P. monteilii (1 strain), and P. putida (1 strain), and were tested for antibiotic resistance after determining the MIC of imipenem to be $${\geq_-}8{\mu}g/mL$$ using the AST-N225 card of Vitek II system. The imipenem-resistant genotypes were determined using PCR products amplified using specific ${\beta}-Lactamase$ gene primers. The MBL gene was identified in all four isolates. One strain of P. aeruginosa exhibited the VIM and SHV-1 type genes, while the other strain exhibited both VIM and OXA group II genes. According to the antimicrobial susceptibility test, the bacteria were more susceptible to amikacin than other antibiotics. DNA fingerprint analysis using ERIC-PCR to analyze the epidemiological relationship between strains estimated that both the P. aeruginosa isolates were similar, but exhibited different DNA band types. It is uncommon to find four strains of imipenem-resistant bacteria with different DNA band types in a single patient.

Emergence of Conjugative Multidrug-Resistant Pseudomonas aeruginosa (접합가능한다제내성녹농균의출현)

  • Miyoung Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.517-525
    • /
    • 2023
  • The emergence and spread of multidrug-resistant Pseudomonas aeruginosa (MRPA) have become a serious problem worldwide. The involvement of metallo-β-lactamases (MBLs) in inducing carbapenem resistance is particularly acute. However, unlike other members of the Enterobacteriaceae genus, new clones of P. aeruginosa are constantly emerging and rapidly replacing previously prevalent dominant clones. Therefore, this study aimed to perform antimicrobial resistance gene analysis, integron gene cassette analysis using DNA sequencing, and plasmid transfer analysis by conjugation to investigate the antimicrobial resistance dynamics of 18 P. aeruginosa strains isolated from various medical samples at a general hospital in Busan from September 2017 to September 2019. All 18 strains showed extensively drug-resistant (XDR) phenotype and were resistant to most antibiotics, except colistin (100%) but were susceptible to aztreonam (22.2%) and ceftazidime (16.6%). Approximately 66.7% of the strains had Class 1 integrons showing various antimicrobial resistances. Notably, IMP-6 ST235 (66.7%), VIM-2 ST357 (16.7%), and IMP-1 ST446(16.7%) were identified. The identification of IMP-1-producing ST446, previously unreported in Korea, is noteworthy considering the emergence and prevalence of another MRPA high-risk clone.

Analysis of Class 1 Integrons in Imipenem-resistant Pseudomonas aeruginosa

  • Sung, Ji Youn
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.2
    • /
    • pp.68-74
    • /
    • 2011
  • Pseudomonas aeruginosa is an aerobic, Gram-negative, glucose-nonfermenting bacterium, which has emerged as a serious opportunistic pathogen. Recently, outbreaks of carbapenem resistant P. aeruginosa give rise to significant therapeutic challenges for treating nosocomial infections. The genes of metallo-${\beta}$-lactamase (MBL), a powerful carbapenemase, are carried as a part of the mobile gene cassettes inserted into integrons playing an important role in rapid dissemination of antibiotic resistance genes among bacterial isolates. In this study, we investigated the prevalence of integron in imipenem resistant P. aeruginosa isolates. A total of 61 consecutive, non-duplicate, and imipenem resistant P. aeruginosa strains were isolated from a university hospital in the Chungcheong province of Korea. We employed repetitive extragenic palindromic sequence-based PCR (rep-PCR) method for the selection of clonally different P. aerusinosa strains. PCR and DNA sequencing were conducted for the detection of integrons. Twenty-one clonally different P. aeruginosa strains were isolated. Only one (P28) of the strains harbored $bla_{VIM-2}$ that was found as gene cassettes in class 1 integrons. Four of 21 carbapenem resistant P. aeruginosa strains harbored class 1 integron containing aminoglycoside resistance determinant. All of the integrons detected in the study contained more than one resistance gene cassette, which can mediate resistance to multiple antibiotics. To prevent further spreading of the multi-drug resistant P. aeruginosa, conseguent monitoring and clinical polices are required.

  • PDF