• Title/Summary/Keyword: MATRIX

Search Result 20,233, Processing Time 0.039 seconds

Preparation and Pharmacokinetic evaluation of Captopril Matrix Tablets with Polyethylene Oxide (폴리에틸렌옥시드를 이용한 캅토프릴 매트릭스 정제의 제조 및 약물동력학적 평가)

  • Jiang, Ge;Baek, Myoung-Ki;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • The captopril matrix tablets composed of polyethylene oxide(PEO) was prepared and administered to beagle dogs. Captopril matrix tablets were prepared using direct compressed method and wet granulation compressed method with various ratios of drug to PEO. The diffusion rate of captopril matrix tablets followed on the Higuchi's diffusion model. With increasing hardness of captopril matrix tablets, release rate was decreased. Each formulation was evaluated by the area under the curve (AUC) and time course of plasma captopril concentration after oral administration to beagle dogs. The $AUC_{0-12}$ were $9.126\;{\mu}g\;h/ml$ and $6.417\;{\mu}g\;h/ml$ for the matrix tablets and conventional tablets, respectively. Therefore, the bioavailability of captopril matrix tablets was greater than that of commercial product. It is suggested that captopril matrix tablets using PEO is a useful sustained release formulation.

  • PDF

Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

  • Kim, Jiyeong;Sohn, Insuk;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.81-96
    • /
    • 2017
  • Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.

Hybrid DCT/DFflWavelet Architecture Based on Jacket Matrix

  • Chen, Zhu;Lee, Moon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.281-282
    • /
    • 2007
  • We address a new representation of DCT/DFT/Wavelet matrices via one hybrid architecture. Based on an element inverse matrix factorization algorithm, we show that the OCT, OFT and Wavelet which based on Haar matrix have the similarrecursive computational pattern, all of them can be decomposed to one orthogonal character matrix and a special sparse matrix. The special sparse matrix belongs to Jacket matrix, whose inverse can be from element-wise inverse or block-wise inverse. Based on this trait, we can develop a hybrid architecture.

  • PDF

Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation

  • Limkatanyu, Suchart;Kuntiyawichai, Kittisak;Spacone, Enrico;Kwon, Minho
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.39-53
    • /
    • 2012
  • This paper presents an alternative way to derive the exact element stiffness matrix for a beam on Winkler foundation and the fixed-end force vector due to a linearly distributed load. The element flexibility matrix is derived first and forms the core of the exact element stiffness matrix. The governing differential compatibility of the problem is derived using the virtual force principle and solved to obtain the exact moment interpolation functions. The matrix virtual force equation is employed to obtain the exact element flexibility matrix using the exact moment interpolation functions. The so-called "natural" element stiffness matrix is obtained by inverting the exact element flexibility matrix. Two numerical examples are used to verify the accuracy and the efficiency of the natural beam element on Winkler foundation.

ON NEWTON'S METHOD FOR SOLVING A SYSTEM OF NONLINEAR MATRIX EQUATIONS

  • Kim, Taehyeong;Seo, Sang-Hyup;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.35 no.3
    • /
    • pp.341-349
    • /
    • 2019
  • In this paper, we are concerned with the minimal positive solution to system of the nonlinear matrix equations $A_1X^2+B_1Y +C_1=0$ and $A_2Y^2+B_2X+C_2=0$, where $A_i$ is a positive matrix or a nonnegative irreducible matrix, $C_i$ is a nonnegative matrix and $-B_i$ is a nonsingular M-matrix for i = 1, 2. We apply Newton's method to system and present a modified Newton's iteration which is validated to be efficient in the numerical experiments. We prove that the sequences generated by the modified Newton's iteration converge to the minimal positive solution to system of nonlinear matrix equations.

Probability distribution-based approximation matrix multiplication simplification algorithm (확률분포 생성을 통한 근사 행렬 곱셈 간소화 방법)

  • Kwon, Oh-Young;Seo, Kyoung-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1623-1629
    • /
    • 2022
  • Matrix multiplication is a fundamental operation widely used in science and engineering. There is an approximate matrix multiplication method as a way to reduce the amount of computation of matrix multiplication. Approximate matrix multiplication determines an appropriate probability distribution for selecting columns and rows of matrices, and performs approximate matrix multiplication by selecting columns and rows of matrices according to this distribution. Probability distributions are generated by considering both matrices A and B participating in matrix multiplication. In this paper, we propose a method to generate a probability distribution that selects columns and rows of matrices to be used for approximate matrix multiplication, targeting only matrix A. Approximate matrix multiplication was performed on 1000×1000 ~ 5000×5000 matrices using existing and proposed methods. The approximate matrix multiplication applying the proposed method compared to the conventional method has been shown to be closer to the original matrix multiplication result, averaging 0.02% to 2.34%.

SOME PROPERTIES OF A CERTAIN PATTERNED MATRIX

  • Park, Jong-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.485-493
    • /
    • 2004
  • This paper presents the interesting properties of a certain patterned matrix that plays an significant role in the statistical analysis. The necessary and sufficient condition on the existence of the inverse of the patterned matrix and its determinant are derived. In special cases of the patterned matrix, explicit formulas for its inverse, determinant and the characteristic equation are obtained.

A Note on the Covariance Matrix of Order Statistics of Standard normal Observations

  • Lee, Hak-Myung
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.285-290
    • /
    • 2000
  • We noted a property of a stationary distribution on the matrix C, which is the covariance matrix of order statistics of standard normal distribution That is the sup norm of th powers of C is ee' divided by its dimension. The matrix C can be taken as a transition probability matrix in an acyclic Markov chain.

  • PDF

Determinant Eigenvalue and Inverse Matrix of a Tridiagonal Matrix (삼대각선행열의 행열식 고유값 및 역행열)

  • Lee, Doo-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.455-459
    • /
    • 1986
  • A large set of linear equations which arise in many applications, such as in digital signal processing, image filtering, estimation theory, numerical analysis, etc. involve the problem of a tridiagonal matrix. In this paper, the determinant, eigenvalue and inverse matrix of a tridiagoanl matrix are analytically evaluated.

  • PDF