• Title/Summary/Keyword: MALDI-TOF Mass Spectrometry

Search Result 214, Processing Time 0.026 seconds

Proteomic Approach to Study the Antioxidant Activities of Dioscoreae Rhizoma on HeLa Cells (산약(山藥)의 항산화 작용에 대한 단백질체 분석 연구)

  • Yang, Jeong-Min;Lee, Ji-Hyung;Sung, Jung-Suk;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.2
    • /
    • pp.108-124
    • /
    • 2008
  • Purpose: This study was examined to verify the anti-oxidative effect of Dioscoreae Rhizoma on HeLa cells by proteomic approach. Methods: Aqueous extract was used to treat HeLa cell with different concentrations treated with water or MeOH extract of Dioscoreae Rhizoma. HeLa cells were co-treated with $H_2O_2$ and Dioscoreae Rhizoma extracts. Proteomics was done to identify, characterize, and quantitate proteins expressed in HeLa cells treated by $H_2O_2$ and Dioscoreae Rhizoma. Results: When HeLa cells were Co-treated with $H_2O_2$ and Dioscoreae batatas extracts, 16 proteins identified by 2-DE and MALDI-TOF mass spectrometry and database search. PRDX, HSP27 was major proteins of antioxidant effect by Dioscoreae batatas. Conclusion: Our results suggest that Dioscoreae Rhizoma extracts induce antioxidant effects by regulating proteins such as PRDX, HSP27.

  • PDF

Proteomic Screening of Antigenic Proteins from the Hard Tick, Haemaphysalis longicornis (Acari: Ixodidae)

  • Kim, Young-Ha;Islam, Mohammad Saiful;You, Myung-Jo
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.1
    • /
    • pp.85-93
    • /
    • 2015
  • Proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. For detection of antigens from Haemaphysalis longicornis, 1-dimensional electrophoresis (1-DE) quantitative immunoblotting technique combined with 2-dimensional electrophoresis (2-DE) immunoblotting was used for whole body proteins from unfed and partially fed female ticks. Reactivity bands and 2-DE immunoblotting were performed following 2-DE electrophoresis to identify protein spots. The proteome of the partially fed female had a larger number of lower molecular weight proteins than that of the unfed female tick. The total number of detected spots was 818 for unfed and 670 for partially fed female ticks. The 2-DE immunoblotting identified 10 antigenic spots from unfed females and 8 antigenic spots from partially fed females. Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF) of relevant spots identified calreticulin, putative secreted WC salivary protein, and a conserved hypothetical protein from the National Center for Biotechnology Information and Swiss Prot protein sequence databases. These findings indicate that most of the whole body components of these ticks are non-immunogenic. The data reported here will provide guidance in the identification of antigenic proteins to prevent infestation and diseases transmitted by H. longicornis.

Isolation and Purification of Neuropeptides from the Tube Feet of the Starfish Asterias amurensis (아무르 불가사리(Asterias amurensis)의 관족으로부터 신경성 펩타이드의 분리 및 정제)

  • Jo, Mi Jeong;Go, Hye-Jin;Kim, Gun-Do;Park, Nam Gyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.2
    • /
    • pp.129-134
    • /
    • 2014
  • Two neuropeptides were purified from the acidified tube feet extract of the starfish Asterias amurensis by C18 reversed phase and size-exclusion high-performance liquid chromatography (HPLC). The tube feet extract and the purified peptides (AST-I and AST-II) showed potent contractile activity on dorsal retractor muscle (DRM) of the starfish Asterina pectinifera and intestine (smooth muscle) of the panther puffer Takifugu pardalis. Treatment of the purified peptides with dithiothreitol (DTT) for 60 min at $37^{\circ}C$ significantly altered their retention times, suggesting that these compounds contained disulfide bonds. The molecular weights of AST-I and AST-II were determined to be 2064.2 Da and 6137.2 Da, respectively, by MALDI-TOF mass spectrometry.

Functional Characterization of the Gene Encoding UDP-glucose: Tetrahydrobiopterin $\alpha$-Glucosyltransferase in Synechococcus sp. PCC 7942

  • Cha En Young;Park Jeong Soon;Jeon Sireong;Kong Jin Seon;Cho Yong Kee;Ryu Jee Youn;Park Youn Il;Park Young Shik
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.191-195
    • /
    • 2005
  • In this study, we attempted to characterize the Synechococcus sp. pee 7942 mutant resultant from a disruption in the gene encoding UDP-glucose: tetrahydrobiopterin a-glucosyltransferase (BGluT). 2D­PAGE followed by MALDI-TOF mass spectrometry revealed that phycocyanin rod linker protein 33K was one of the proteins expressed at lower level in the BGluT mutant. BGluT mutant cells were also determined to be more sensitive to high light stress. This is because photosynthetic O$_2$ exchange rates were significantly decreased, due to the reduced number of functional PSIs relative to the wild type cells. These results suggested that, in Synechococcus sp. pee 7942, BH4-glucoside might be involved in photosynthetic photoprotection.

Structural Characterization of Non-reducing Oligosaccharide Produced by Arthrobacter crystallopoietes N-08

  • Bae, Bum-Sun;Shin, Kwang-Soon;Lee, Ho
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.519-525
    • /
    • 2009
  • A bacterial strain (Strain N-08) capable of extracellularly producing high level of non-reducing oligosaccharide (NR-OS) isolated from soil. The strain was identified phylogenetically by 16S rDNA sequence analysis and found to be very close to Arthrobacter crystallopoietes. The high production of NR-OS was observed in the basal culture medium containing maltose as a sole carbon source. The NR-OS in culture supernatant was purified by glucoamylase treatment and Dowex-1 (OH.) ion exchange chromatography and its structure was characterized. This oligosaccharide consisted of only glucose. Methylation analysis indicated that this fraction was composed mainly of non-reducing terminal glucopyranoside. Matrixassisted laser-induced/ionization time-of-flight (MALDI-TOF) and electrospray ionization-mass spectrometry (ESI-MS)/MS analyses suggested that this oligosaccharide comprised non-reducing disaccharide unit with 1,1-glucosidic linkage. When this disaccharide was analyzed by $^1H$-NMR and $^{13}C$-NMR, it gave the same signals with $\alpha$-D-glucopyranosyl-(1,1)-$\alpha$-Dglucopyranoside. These results indicated that the NR-OS produced by A. crystallopoietes N-08 was ${\alpha}1$,${\alpha}1$-trehalose. This is the first report of the trehalose which can be produced directly from maltose by A. crystallopoietes N-08.

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Purification of a Pore-forming Peptide Toxin, Tolaasin, Produced by Pseudomonas tolaasii 6264

  • Cho, Kwang-Hyun;Kim, Sung-Tae;Kim, Young-Kee
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.113-118
    • /
    • 2007
  • Tolaasin, a pore-forming peptide toxin, is produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. P. tolaasii 6264 was isolated from the oyster mushroom damaged by the disease in Korean. In order to isolate tolaasin molecules, the supernatant of bacterial culture was harvested at the stationary phase of growth. Tolaasin was prepared by ammonium sulfate precipitation and three steps of chromatograpies, including a gel permeation and two ion exchange chromatographies. Specific hemolytic activity of tolaasin was increased from 1.7 to 162.0 HU $mg^{-1}$ protein, a 98-fold increase, and the purification yield was 16.3%. Tolaasin preparation obtained at each purification step was analyzed by HPLC and SDS-PAGE. Two major peptides were detected from all chromatographic preparations. Their molecular masses were analyzed by MALDI-TOF mass spectrometry and they were identified as tolaasin I and tolaasin II. These results demonstrate that the method used in this study is simple, time-saving, and successful for the preparation of tolaasin.

Proteomic Analysis of Proteins of Weissella confusa 31 Affected by Bile Salts

  • Lee, Kang Wook;Lee, Seung-Gyu;Han, Nam Soo;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1432-1440
    • /
    • 2012
  • Weissella confusa 31, an isolate from human feces, possesses desirable properties as a probiotic strain, including bile salt resistance. W. confusa 31 is not inhibited by bile salts up to 0.3% concentration. Proteins affected by bile salts (0.05%) were examined by 2-D gel electrophoresis. Our proteomic analyses revealed that the intensities of 29 spots were changed, where 17 increased (including 2 spots observed only under the bile salts stress conditions) and 12 decreased. Proteins were identified by MALDI-TOF mass spectrometry. Proteins increased in the band intensities included adenylate kinase (12.75-fold increase), Clp-like ATP-dependent protease (11.91-fold), 6-phosphogluconate dehydrogenase (10.35-fold), and HSP 70 (5.07-fold). Some of the increased or decreased proteins are also known to be involved in other types of stress responses.

Proteomic Dissection of Abiotic Stress Response in Crop Plants

  • Alam, Iftekhar;Sharmin, Shamima Akhtar;Lee, Byung-Hyun
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.196-204
    • /
    • 2011
  • Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. In addition, future agricultural production and management will encounter multifaceted challenges from global climate change. Therefore, it is necessary to study the molecular response of crop plants to the stresses in order to develop appropriate strategies to sustain food production under adverse environmental conditions. We carried out a large scale proteomic analysis of soybean plants in response to various abiotic stresses, including drought, salinity, waterlogging and their interactions. Proteins were analyzed by two dimensional polyacrylamide gel electrophoresis followed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. The identified proteins are involved in a wide range of cellular functions. In addition to the well known stress-associated proteins, we identified several novel proteins, which were not reported before. In many cases our proteomic data bridges the gap between mRNA and metabolite data. Our studie provides new insights into identification of abiotic stress responsive proteins in soybean, and demonstrates the advantages of proteomic analysis in dissecting metabolic and regulatory networks.

  • PDF

Proteome Profiling of Murine Macrophages Treated with the Anthrax Lethal Toxin (탄저 치사독소 처리에 의한 생쥐 대식세포의 단백질체 발현 양상 분석)

  • Jung Kyoung-Hwa;Seo Giw-Moon;Kim Sung-Joo;Kim Ji-Chon;Oh Seon-Mi;Oh Kwang-Geun;Chai Young-Gyu
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.262-268
    • /
    • 2005
  • Intoxication of murine macrophages (RAW 264.7) with the anthrax lethal toxin (LeTx 100 ng/ml) results in profound alterations in the host cell gene expression. The role of LeTx in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional polyacrylamide gel electrophoresis to analyze the protein profile of murine macrophages treated with the LeTx, and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the ProFound database. Among the differentially expressed spots, cleaved mitogen-activated protein kinase kinase (Mek1) and glucose-6-phosphate dehydrogenase were increased in the LeTx treated macrophages. Mek1 acts as a negative element in the signal transduction pathway, and G6PD plays the role for the protection of the cells from the hyper-production of active oxygen. Our results suggest that this proteomic approach is a useful tool to study protein expression in intoxicated macrophages and will contribute to the identification of a putative substrate for LeTx.