• Title/Summary/Keyword: MALDI-TOF/MS

Search Result 283, Processing Time 0.039 seconds

Increased Viability of Sub-lethal Heat Shocked Salmonella Typhimurium on Acids and Oxidants (열충격 Salmonella Typhimurium의 산과 산화제에서 생존력 증가)

  • Moon, Bo-Youn;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.712-716
    • /
    • 2008
  • In an effort to evaluate Salmonella food safety using combinations of preservation techniques, its viabilities when exposed to HCl, acetic acid, and the oxidative agents (hydrogen peroxide and butyl hydrogen peroxide), were analyzed using sub-lethal heat-shocked Salmonella Typhimurium at $56^{\circ}C$. 2D gel electrophoresis and MALDI-TOF MS analyses were also conducted to determine the expression and repression of proteins in heat-shocked cells. Heat-shocked S. Typhimurium evidenced a reduction of viable counts by 1-2 log CFU/mL. However, viality of non heat-shocked S. Typhimurium decreased markedly by 5-6 log CFU/mL at a pH 4 in response to acid and oxidative stresses. Sub-lethal heat treatment greatly increased the resistance of S. Typhimurium against acid and oxidant agents. As for 2D gel electrophoresis and protein identification via MALDI-TOF MS, 17 major proteins in non heat-shocked S. Typhimurium were detected, and only 13 proteins among these proteins were detected in heat-shocked S. Typhimurium. The heat shock proteins such as DnaK and small heat shock proteins were included, and may be associated with the resistance of S. typhimurium against exposure to acids and oxidants. Therefore, even though the promising hurdle technology using the combined mild treatments including heat was applied to S. Typhimurium, the proper heat treatment to reduce its crossprotection activity toward the following preservative agents might be considered.

Identification and Molecular Characterization of Three Isoforms of Iturin Produced by Endophytic Bacillus sp. CY22 (식물 내생균 Bacillus sp. CY22가 생성하는 iturin isoform의 분리 및 특성)

  • Cho, Soo-Jeong;Yun-Han-Dae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.1005-1012
    • /
    • 2005
  • Endophytic Bacillus sp. CY22 was previously isolated from the interior of balloon flower root and showed strong antifungal activity against phytopathogenic fungi such as Rhizoctonia solnni, Fusarium oxysporum, and Phythium ultimum. Many Bacillus strains produce antifungal compound such as iturin, fengycin, and mycosubtilin. We isolated and identified antifungal compound from cell supernatant of the endophytic strain. By the MALDI-TOF mass result, the antifungal compound was similar to the known antifungal lipopeptide iturin. It was found that the purified iturin had three isoforms with protonated masses of m/z 1,043.39, 1,057.42, and 1,071.42 and different structures in combination with $Na^{+}$ ion using MALDI-TOF MS. The ita22 gene, which transacylase gene is associated with production of antifungal iturin, had an open reading frame (ORF) of 1,200 bp encoding 400 amino acids. Results of deduced amino acids sequence homology search, Ita22 was homologous with FenF (BAB69697) of Bacillus subtilis 168.

A Proteomic Approach to Study msDNA Function in Escherichia coli

  • Jeong, Mi-Ae;Lim, Dongbin
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2004
  • Retron is a prokaryotic genetic element that produces multicopy single-stranded DNA covalently linked to RNA (msDNA) by a reverse transcriptase. It was found that cells producing a large amount of msDNA, rather than those that did not, showed a higher rate of mutation. In order to understand the molecular mechanism connecting msDNA production to the high mutation rate the protein patterns were compared by two dimensional gel electrophoresis. Ten proteins were found to be differentially expressed at levels more than three fold greater in cells with than without msDNA, nine of which were identified by MALDI TOF MS. Eight of the nine identified proteins were repressed in msDNA-producing cells and, surprisingly, most were proteins functioning in the dissimilation of various carbon sources. One protein was induced four fold greater in the msDNA producing cells and was identified as a 30S ribosomal protein S2 involved in the regulation of translation. The molecular mechanism underlying the elevated mutation in msDNA-producing cell still remains elusive.

Synthesis of Dendrimer Based Polymeric and Macrocyclic Complexes with a Platinum-Acetylide ${\pi}-Conjugated$ Organometallic Core

  • Jang, Woo-Dong
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.334-338
    • /
    • 2005
  • A three-layered poly(benzyl ether) dendrimer having a bis-ethynylbenzene core was synthesized and characterized with $^{1}H$ NMR and MALDI-TOF-MS spectroscopy. The dendrimer was reacted with platinum complexes to obtain platinum-acetylide based organometallic polymers. When the dendrimer was reacted with trans-[$PtCl_{2}(PEt_{3})_{2}$], a high molecular weight polymeric compound was formed, whereas, with cis-[$PtCl_{2}dppp$], a uniform molecular weight compound was formed, which was found to be a dimeric metallacycle by $^{1}H\;NMR,\;^{31}P\;NMR$ and ESI-TOF-MS spectroscopy. Both these complexes exhibited relatively a strong emission around 440 nm, indicating that they could be potential candidates for blue emitting polymer LEDs.

Alteration of Phospholipids during the Mitophagic Process in Lung Cancer CellsS

  • Lee, Jae Won;Cho, Kyung Mi;Jung, Jae Hun;Tran, Quangdon;Jung, Woong;Park, Jongsun;Kim, Kwang Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1790-1799
    • /
    • 2016
  • Matrix assisted laser desorption ionization (MALDI)-time of flight/mass spectrometry (TOF/MS) was applied to investigate alterations in phospholipids in mitophagic cancer cells. Several phospholipids, including phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylinositols (PIs), were successfully analyzed in control and mitophagy-induced H460 cells in the positive and negative ion modes. Principal component analysis was applied to differentiate the two groups. The upregulated and downregulated phospholipid species in the mitophagic cells were also represented in a heatmap. In the volcano plot (fold change > 1.3 and p value < 0.01), individual species of seven PCs, two SMs, and three PIs were selected as differentially regulated phospholipids. In particular, almost all the molecular species of PC, SM, and PI were downregulated in the mitophagic cells. Quantification of these lipids indicated that mitophagy induces altered metabolism of phospholipids. Therefore, phospholipid alterations during the mitophagic process of lung cancer cells were well characterized by MALDI-TOF/MS.

Proteomic Analysis of Global Changes in Protein Expression During Exposure of Gamma Radiation in Bacillus sp. HKG 112 Isolated from Saline Soil

  • Gupta, Anil Kumar;Pathak, Rajiv;Singh, Bharat;Gautam, Hemlata;Kumar, Ram;Kumar, Raj;Arora, Rajesh;Gautam, Hemant K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.574-581
    • /
    • 2011
  • A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a fullsystem understanding of the radiation stress protection mechanisms of bacteria in different environments.

Proteome Analysis of Disease Resistance against Ralstonia solanacearum in Potato Cultivar CT206-10

  • Park, Sangryeol;Gupta, Ravi;Krishna, R.;Kim, Sun Tae;Lee, Dong Yeol;Hwang, Duk-ju;Bae, Shin-Chul;Ahn, Il-Pyung
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Potato is one of the most important crops worldwide. Its commercial cultivars are highly susceptible to many fungal and bacterial diseases. Among these, bacterial wilt caused by Ralstonia solanacearum causes significant yield loss. In the present study, integrated proteomics and genomics approaches were used in order to identify bacterial wilt resistant genes from Rs resistance potato cultivar CT-206-10. 2-DE and MALDI-TOF/TOF-MS analysis identified eight differentially abundant proteins including glycine-rich RNA binding protein (GRP), tomato stress induced-1 (TSI-1) protein, pathogenesis-related (STH-2) protein and pentatricopeptide repeat containing (PPR) protein in response to Rs infection. Further, semi-quantitative RT-PCR identified up-regulation in transcript levels of all these genes upon Rs infection. Taken together, our results showed the involvement of the identified proteins in the Rs stress tolerance in potato. In the future, it would be interesting to raise the transgenic plants to further validate their involvement in resistance against Rs in potato.

Enrichment of Peptides using Novel C8-functionalized Magnetic Nanoparticles for Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometric Analysis

  • Song, Sun-Mi;Yang, Hyo-Jik;Kim, Jin-Hee;Shin, Seong-Jae;Park, Eun-Hye;Kim, Jeong-Kwon
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.53-56
    • /
    • 2011
  • [ $C_8$ ]functionalized magnetic nanoparticles were synthesized by coating magnetic $Fe_3O_4$ nanoparticles with silicaamine groups using 3-aminopropyltriethoxysilane and by subsequently modifying the amine groups with chloro(dimethyl)octylsilane to produce octyl groups on the surface of the MNPs. The $C_8$-functionalized MNPs were used to enrich peptides from tryptic protein digests of myoglobin and ${\alpha}$-casein. The enriched peptides were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). MALDI-MS was also used to investigate desalting of the $C_8$-functionalized MNPs. Sample solutions were prepared in 1.0 M NaCl, and the successful removal of salt was observed. Enrichment with $C_8$-functionalized MNPs was very effective for separating and concentrating tryptic peptides.

Comparative Serum Proteomic Analysis of Serum Diagnosis Proteins of Colorectal Cancer Based on Magnetic Bead Separation and MALDI-TOF Mass Spectrometry

  • Deng, Bao-Guo;Yao, Jin-Hua;Liu, Qing-Yin;Feng, Xian-Jun;Liu, Dong;Zhao, Li;Tu, Bin;Yang, Fan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6069-6075
    • /
    • 2013
  • Background: At present, the diagnosis of colorectal cancer (CRC) requires a colorectal biopsy which is an invasive procedure. We undertook this pilot study to develop an alternative method and potential new biomarkers for diagnosis, and validated a set of well-integrated tools called ClinProt to investigate the serum peptidome in CRC patients. Methods: Fasting blood samples from 67 patients diagnosed with CRC by histological diagnosis, 55 patients diagnosed with colorectal adenoma by biopsy, and 65 healthy volunteers were collected. Division was into a model construction group and an external validation group randomly. The present work focused on serum proteomic analysis of model construction group by ClinProt Kit combined with mass spectrometry. This approach allowed construction of a peptide pattern able to differentiate the studied populations. An external validation group was used to verify the diagnostic capability of the peptidome pattern blindly. An immunoassay method was used to determine serum CEA of CRC and controls. Results: The results showed 59 differential peptide peaks in CRC, colorectal adenoma and health volunteers. A genetic algorithm was used to set up the classification models. Four of the identified peaks at m/z 797, 810, 4078 and 5343 were used to construct peptidome patterns, achieving an accuracy of 100% (> CEA, P<0.05). Furthermore, the peptidome patterns could differentiate the validation group with high accuracy close to 100%. Conclusions: Our results showed that proteomic analysis of serum with MALDI-TOF MS is a fast and reproducible approach, which may provide a novel approach to screening for CRC.

Studies on Chemical Strutures and Adhesion Performance of pMDI Adhesives Modified by Ozonized Soybean Oil with Different Mixing Ratios (오존산화 콩기름의 구조분석 및 이를 이용한 변성 pMDI 접착제의 중량비에 따른 접착력 변화)

  • You, Young Sam;Lee, Hyun Jong;Lee, Taek Jun;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.56-64
    • /
    • 2009
  • The purpose of this study was to investigate and develop an eco-friendly wood adhesive based on vegetable oil (especially soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The soybean oil (SBO) was reacted with $O_3$ at the rate of 7.13 g/h for different times, 15 minutes, 30 minutes, 60 minutes, and 120 minutes. The investigation of the modified chemical structure of the ozonized SBOs were conducted using FT-IR, $^1H$-NMR, MALDI-TOF MS, and GC/MS. As ozonification time increased, the peak of the unsaturated double bonds was disappeared and aldehyde or carboxyl peak appeared because ozonification broke the oil into small molecules. The plywoods were made at $110^{\circ}C$ with 30 seconds/mm hot-press time using the different ozonized SBO/pMDI adhesives and were tested for the dry, wet, cyclic boil test according to the Korea Industrial Standard F3101 Ordinary plywood. The bond strengths gradually increased with increasing ozonification time. The weight ratio 1:1 (ozonized SBO/pMDI), all strengths in 15, 30 and 60 minuets, exceeded constantly the dry, wet, cyclic boiling standard requirement. The range of ozonification time and weight ratio can fulfil1 the requirment of the wet test standard were 30~60 minutes and more than 0.5 pMDI. From the comprehensive view on the results of above experiments, it could be confirmed through experiments that ozonized SBO/pMDI has characteristics of effective reactivity and wet stability showed as an excellent candidate of wood adhesive applications.