• Title/Summary/Keyword: MALDI MS

Search Result 333, Processing Time 0.023 seconds

An Algorithm for Baseline Correction of SELDI/MALDI Mass Spectrometry Data

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1289-1297
    • /
    • 2006
  • Before other statistical data analysis the preprocessing steps should be performed adequately to have meaningful results. These steps include processes such as baseline correction, normalization, denoising, and multiple alignment. In this paper an algorithm for baseline correction is proposed with using the piecewise cubic Hermite interpolation with block-selected points and local minima after denoising for SELDI or MALDI mass spectrometry data.

  • PDF

Detection of Long Alkyl Esters of Succinic and Maleic Acid Using TLC-MALDI-MS

  • Kim, Hin-Hee;Han, Sang-Pil;Kim, Jeong-Kwon;Kim, Yeong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.915-920
    • /
    • 2011
  • Four esters of succinic and maleic acid were synthesized, separated by thin-layer chromatography (TLC), and identified using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). A comparison of matrix materials showed that 2,6-dihydroxybenzoic acid (2,6-DHB) yielded a greater ionization efficiency than 2,5-DHB prior to TLC separation. The location of each ester sample on the TLC plate was estimated by comparing the developed plate with a duplicate plate that had been visualized by immersion in a $KMnO_4$ solution. Generally, mass spectra obtained from the $KMnO_4$-visualized plate were relatively poor. Reproducible mass spectra with high peak abundance were difficult to obtain using the 2,6-DHB matrix from crude synthetic esters extracted from the TLC plates. Significant improvements in both reproducibility and sensitivity were realized by using pencil lead as the MALDI matrix. The current methodology will be beneficial to organic chemists since it can provide a guideline for simple and rapid characterization of small organic compounds.

High-Throughput Screening Technique for Microbiome using MALDI-TOF Mass Spectrometry: A Review

  • Mojumdar, Abhik;Yoo, Hee-Jin;Kim, Duck-Hyun;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.106-114
    • /
    • 2022
  • A rapid and reliable approach to the identification of microorganisms is a critical requirement for large-scale culturomics analysis. MALDI-TOF MS is a suitable technique that can be a better alternative to conventional biochemical and gene sequencing methods as it is economical both in terms of cost and labor. In this review, the applications of MALDI-TOF MS for the comprehensive identification of microorganisms and bacterial strain typing for culturomics-based approaches for various environmental studies including bioremediation, plant sciences, agriculture and food microbiology have been widely explored. However, the restriction of this technique is attributed to insufficient coverage of the mass spectral database. To improve the applications of this technique for the identification of novel isolates, the spectral database should be updated with the peptide mass fingerprint (PMF) of type strains with not only microbes with clinical relevance but also from various environmental sources. Further, the development of enhanced sample processing methods and new algorithms for automation and de-replication of isolates will increase its application in microbial ecology studies.

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su;Lee, Jonghee;Kim, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2635-2639
    • /
    • 2013
  • The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

Preparation of Fullerene Oxides by Fullerenes[$C_{60},C_{70}$] with Several Oxidants under Ultrasonic Condition (초음파 조건에서 산화제를 이용한 풀러렌 산화물의 제조)

  • Kown, Sock-Chan;Jeong, Hong-Seok;Ko, Weon-Bae
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.147-156
    • /
    • 2003
  • Synthesis of fullerene oxides by fullerenes [$C_{60},\;C_{70}$] and several oxidants such as benzoylperoxide, trichloroisocyanuric acid, methyltrioxorhenium(VII), iodosobenzene, phosphorous pentoxide take place under ultrasonic condition at room temperature. The MALDI-TOF MS,UV-visible spectra and HPLC analysis confirmed that the products of fullerenes oxidation are [$C_{60}(O)_n$], ($n=1{\sim}3$ or n=1) and [$C_{70}(O)_n$], ($n=1{\sim}2$ or n=1). As compared with the reactivity of epoxidation of fullerenes [$C_{60},\;C_{70}$], the reaction rate of $C_{70}$ was lower than that of $C_{60}$ under same reaction condition.

Free Radical Initiated Peptide Sequencing Using MALDI-TOF/TOF Mass Spectrometry

  • Song, Insu;Lee, Jae-ung;Baek, Jaehyeon;Cha, Sangwon;Han, Sang Yun;Oh, Han Bin
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.56-60
    • /
    • 2018
  • In this study, matrix-assisted laser desorption/ionization (MALDI) was applied to the TEMPO-assisted FRIPS for the first time. We found that 3-HPA is the optimal matrix for the analysis of p-TEMPO-Bz-Sc-peptides, which gives minimal precursor fragmentations. MALDI-TOF/TOF experiments on p-TEMPO-Bz-Sc-peptides yielded mainly $[a_n+H]^+$, $[z_n+H]^+$, and $[y_n]^+-type$ products, indicating that radical-driven peptide fragmentation occurs in MALDI-TOF/TOF-MS.

Identification of Lactic Acid Bacteria in Galchi- and Myeolchi-Jeotgal by 16S rRNA Gene Sequencing, MALDI-TOF Mass Spectrometry, and PCR-DGGE

  • Lee, Yoonju;Cho, Youngjae;Kim, Eiseul;Kim, Hyun-Joong;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1112-1121
    • /
    • 2018
  • Jeotgal is a Korean traditional fermented seafood with a high concentration of salt. In this study, we isolated lactic acid bacteria (LAB) from galchi (Trichiurus lepturus, hairtail) and myeolchi (Engraulis japonicas, anchovy) jeotgal on MRS agar and MRS agar containing 5% NaCl (MRS agar+5% NaCl), and identified them by using 16S rRNA gene sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as culture-dependent methods. We also performed polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) as a culture-independent method to identify bacterial communities. Five samples of galchi-jeotgal and seven samples of myeolchi-jeotgal were collected from different regions in Korea. A total of 327 and 395 colonies were isolated from the galchi- and myeolchi-jeotgal samples, respectively. 16S rRNA gene sequencing and MALDI-TOF MS revealed that the genus Pediococcus was predominant on MRS agar, and Tetragenococcus halophilus on MRS agar+5% NaCl. PCR-DGGE revealed that T. halophilus, Tetragenococcus muriaticus, and Lactobacillus sakei were predominant in both types of jeotgal. T. halophilus was detected in all samples. Even though the same species were identified by both culture-dependent and -independent methods, many species identified by the culture-dependent methods were not in the bacterial list identified by the culture-independent methods. The distribution of bacteria in galchi-jeotgal was more diverse than in myeolchi-jeotgal. The diverse LAB in galchi- and myeolchi-jeotgals can be further studied as candidates for starter cultures to produce fermented foods.

2-DE and MALDI-TOF MS-based identification of bovine whey proteins in milk collected soon after parturition

  • Lee, Jae Eun;Lin, Tao;Kang, Jung Won;Shin, Hyun Young;Lee, Joo Bin;Jin, Dong Il
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.635-643
    • /
    • 2018
  • Bovine milk is widely consumed by humans and is a primary ingredient of dairy foods. Proteomic approaches have the potential to elucidate complex milk proteins and have been used to study milk of various species. Here, we performed a proteomic analysis using 2-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization-time of flight mass spectrometer (MALDI-TOF MS) to identify whey proteins in bovine milk obtained soon after parturition (bovine early milk). The major casein proteins were removed, and the whey proteins were analyzed with 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The whey proteins (2 mg) were separated by pI and molecular weight across pH ranges of 3.0 - 10.0 and 4.0 - 7.0. The 2-DE gels held about 300 to 700 detectable protein spots. We randomly picked 12 and nine spots that were consistently expressed in the pH 3.0 - 10.0 and pH 4.0 - 7.0 ranges, respectively. Following MALDI-TOF MS analysis, the 21 randomly selected proteins included proteins known to be present in bovine milk, such as albumin, lactoferrin, serum albumin precursor, T cell receptor, polymeric immunoglobulin receptor, pancreatic trypsin inhibitor, aldehyde oxidase and microglobulin. These proteins have major functions in immune responses, metabolism and protein binding. In summary, we herein identified both known and novel whey proteins present in bovine early milk, and our sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed their expression pattern.

Identification of Upregulated APOA1 Protein of Chicken Liver in Pullorum Disease (추백리가 감염된 닭의 간에서 발현이 증가하는 APOA1 단백질의 확인)

  • Jung K. C.;Lee Y. J.;Yu S. L.;Lee J. H.;Jang B. K.;Koo Y. B.;So H. K.;Choi K. D.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The aim of this study was to investigate differentially expressed proteins between normal chicken liver and chicken liver inffeted by Salmonella pullorum. 2-dimensional electrophoresis (2DE) and mass spectrometry (MS) were used to identify the proteins. More than 300 protein spots were detected on silver stained 2DE gels using pH 3$\~$10 gradients. The most outstanding protein spot was further analyzed by MALDI-TOF MS and protein database using the Mascot search engine. The protein was finally identified as APOAI (Apolipoprotein AI). Based on the known function of the APOAI, this gene acts protective action against the accumulation of platelet thrombin at the site of vascular damage for the pullorum disease. Therefore APOAI protein, identified in this study, can be a valuable biomarker in relation to the pullorum disease in chicken.

Novel analysis procedure for red ginseng polysaccharides by matrix-assisted laser desorption/ionization time-of-flight/time-offlight mass spectrometry

  • Jin, Ye Rin;Oh, Myung Jin;Yuk, Heung Joo;An, Hyun Joo;Kim, Dong Seon
    • Journal of Ginseng Research
    • /
    • v.45 no.5
    • /
    • pp.539-545
    • /
    • 2021
  • Background: Red ginseng polysaccharides (RGPs) have been acknowledged for their outstanding immunomodulation and anti-tumor activities. However, their studies are still limited by the complexity of their structural features, the absence of purification and enrichment methods, and the rarity of the analytical instruments that apply to the analysis of such macromolecules. Thus, this study is an attempt to establish a new mass spectrometry (MS)-based analysis procedure for RGPs. Methods: Saponin pre-excluded powder of RG (RG-SPEP, 10 mg) was treated with 200 µL of distilled water and centrifuged for 5 h at 1000 rpm and 85 ℃. Ethanol-based precipitation and centrifugation were applied to obtain RGPs from the heated extracts. Further, endo-carbohydrase treatments were performed to produce specific saccharide fragments. Solid-phase extraction (SPE) processes were implemented to purify and enrich the enzyme-treated RGPs, while matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) MS was employed for the partial structural analysis of the obtained RGPs. Results: Utilizing cellulase, porous graphitized carbon (PGC), hydrophilic interaction chromatography (HILIC), and MALDI-TOF/TOF MS, the neutral and acidic RGPs were qualitatively analyzed. Hexn and Hexn-18 (cellulose analogs) were determined to be novel neutral RGPs. Additionally, the [Unknown + Hexn] species were also determined as new acidic RGPs. Furthermore, HexAn (H) was determined as another form of the acidic RGPs. Conclusion: Compared to the previous methods of analysis, these unprecedented applications of HILIC-SPE and MALDI-TOF/TOF MS to analyze RGPs proved to be fairly effective for fractionating and detecting neutral and acidic components. This new procedure exhibits great potential as a specific tool for searching and determining various polysaccharides in many herbal medicines.