• Title/Summary/Keyword: MAC Control

Search Result 849, Processing Time 0.029 seconds

Multi-channel MAC Protocol for Improving Channel Efficiency in Wireless Networks (무선 네트워크에서 채널 효율성을 높이기 위한 멀티채널 MAC 프로토콜)

  • Kim, Young-Kyoung;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.549-560
    • /
    • 2008
  • In this paper, we propose a new multi-channel MAC protocol to improve the channel efficiency by using two interfaces. Most of previous researches that have considered multi-channel wireless network environments use a common control channel to exchange control signals and they have a bottle neck problem at common control channel as increasing the number of data channels. In the proposed MAC protocol, we separate receiving and transmitting channels so that sending and receiving data and control packets at the same time is possible. It increases the total network throughput. Since there is no common control channel, the network does not suffer from the bottle neck problem. By applying a TDMA scheme, we can avoid packet collisions between data packets and control packets and reduce the possibility of CTS or ACK packet collisions. Simulation results show that the proposed multi-channel MAC protocol improves the total network throughput and channel efficiency compared with the existing method.

An Energy-Efficient Asynchronous Sensor MAC Protocol Design for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 비동기 방식의 센서 MAC 프로토콜 설계)

  • Park, In-Hye;Lee, Hyung-Keun;Kang, Seok-Joong
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 2012
  • Synchronization MAC Protocol such as S-MAC and T-MAC utilize duty cycling technique which peroidically operate wake-up and sleep state for reducing energy consumption. But synchronization MAC showed low energy efficiency because of additional control packets. For better energy consumption, Asychronization MAC protocols are suggested. For example, B-MAC, and X-MAC protocol adopt Low Power Listening (LPL) technique with CSMA algorithm. All nodes in these protocols joining a network with independent duty cycle schedules without additional synchronization control packets. For this reason, asynchronous MAC protocol improve energy efficiency. In this study, a low-power MAC protocol which is based on X-MAC protocol for wireless sensor network is proposed for better energy efficiency. For this protocol, we suggest preamble numbering, and virtual-synchronization technique between sender and receive node. Using TelosB mote for evaluate energy efficiency.

EEPB-MAC: Energy Efficient & Priority-Based MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 수확 무선 센서 네트워크에서 에너지 효율 및 우선순위 기반의 MAC 프로토콜)

  • Kim, Seong-Cheol;Jeon, Jun-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.755-761
    • /
    • 2013
  • Medium access control (MAC) protocols for wireless sensor networks make sensor nodes on state for energy-efficiency only when necessary. In this paper we present an energy efficient priority-based MAC protocol for energy-harvesting Wireless Sensor Networks (WSNs). For support priority-based packet transmission the proposed EEPB-MAC protocol uses the modified IEEE 802.15.4 beacon frames including priority bit, sender node address, and NAV value fields. A receiver node periodically wakes up, receives sender beacon frames, selects data sending sender, and broadcasts a beacon frame containing the selected sender's address. A receiver node selects sender node according to sender's data priority. A receiver nodes also adjust wake up period based on their energy states. Hence, the energy consumption of receiver node can be minimized. Through simulations and analytical analysis, we evaluate the performance of our proposed the EEPB-MAC protocol and compare it against the previous MACs. Results have shown that our protocol outperforms other MAC in terms of energy consumption, higher priority packet delivery delay.

MAC Layer of IEEE 802.11 Wireless LAN (IEEE 802.11 무선 근거리통신망의 MAC계층)

  • Park, Yeong-Mi;Jeong, Hui-Chang
    • Electronics and Telecommunications Trends
    • /
    • v.11 no.4 s.42
    • /
    • pp.89-101
    • /
    • 1996
  • 본 논문은 IEEE 802.11 프로토콜 구성과 무선 근거리 통신망의 매체접근제어(Media Access Control: MAC), 공유자원인 무선채널을 액세스하기 위하여 사용하는 대표적인 MAC방식을 분류하여 설명하였고, MAC의 핵심이 되는 매체접근제어 프로토콜인 DFWMAC(Distributed Foundation Wireless MAC)의 핵심기능에 대하여 소개한다.

Design of MAC Chip for AWG-based WDM-PON-II: MAC Protocol (AWG 기반의 WDM-PON을 위한 MAC 칩 설계-II: MAC 프로토콜)

  • Han, Kyeong-Eun;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.646-656
    • /
    • 2008
  • In this paper, we design and verify the MAC chip of the two-stage AWG-based WDM-PON which considers 128 ONUs and 32 wavelengths. Each wavelength with the capacity of 1Gbps is allocated to ONU for downstream transmission but each wavelength for upstream transmission can be shared by four ONUs. Therefore, MAC protocol is required to avoid the collision and use the network resource efficiently among ONUs which are sharing the same wavelength. To design a request/permit-based MAC protocol, we define a unit-chip module called sub-MAC. The WDM-PON with 128 ONUs can be implemented by using 32 sub-MAC modules. The sub-MAC consists of one control unit, one receipt unit and four transmission units. The state transition diagram of the module is described by the internal/external control signals among the functional units. The function of the sub-MAC module is verified through logic simulation using ModelSIM.

Design of Cooperative Communication Protocol for UWB-based Distributed MAC Systems (UWB 기반 Distributed MAC 시스템을 위한 협력 통신 프로토콜 설계)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.460-469
    • /
    • 2012
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, we propose a novel cooperative communication protocol adaptive to current UWB link transmission rate. The proposed cooperative communication protocol has compatibility with current WiMedia D-MAC and Wireless USB standard and is executed at each device according to a Relay Node Selection (RNS) criterion.

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

The Study of MAC protocol for efficient Wireless Sensor Network (Wireless 센서 네트워크를 위한 MAC 프로토콜에 관한 연구)

  • Lee, Woo-Chul;Kim, Dong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.517-520
    • /
    • 2005
  • Wireless sensor network combines sensing and computing technology which can sense light, temperature, vibration, magnetic field and wind etc, as each purpose of using those. Wireless nodes operate signal processing skill which has proceeded sensed information from the sensor, transmission which makes information reached to observer and limited energy managing skill which is needed on account of using battery to operate wireless. To make responsible measuring and sensing out of them, efficient energy management is so important to maintain life time of network. In this paper, after explaining CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance) traditional wireless MAC protocol, and ER-MAC(Energy Rate Medium Access Control) which are not managing resource of hardware but MAN(Medium Access Control), data-link layer out of OSI 7 layer. We would like to analyze those efficiency of power saving comparing with each protocol.

  • PDF

Energy-efficient Relay MAC with Dynamic Power Control in Wireless Body Area Networks

  • Cai, Xuelian;Yuan, Jingjing;Yuan, Xiaoming;Zhu, Wu;Li, Jiandong;Li, Changle;Ullah, Sana
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1547-1568
    • /
    • 2013
  • Wireless body area network (WBAN) is an emerging short-range wireless communication network with sensor nodes located on, in or around the human body for healthcare, entertainment and ubiquitous computing. In WBANs, energy is severely constrained which is the prime consideration in the medium access control (MAC) protocol design. In this paper, we propose a novel MAC protocol named Energy-efficient Relay MAC with dynamic Power Control (ERPC-MAC) to save energy consumption. Without relying on the additional devices, ERPC-MAC employs relaying nodes to provide relay service for nodes which consume energy fast. Accordingly the superframe adjustment is performed and then the network topology can be smoothly switched from single-hop to multi-hop. Moreover, for further energy saving and reliability improvement, the dynamic power control is introduced to adjust the power level whenever a node transmits its packets to the coordinator or the relaying node. To the best of the authors' knowledge, this is the first effort to integrate relay, topology adjustment and power control to improve the network performance in a WBAN. Comprehensive simulations are conducted to evaluate the performance. The results show that the ERPC-MAC is more superior to the existing standard and significantly prolongs the network lifetime.

UWB Link-Adaptive Relay Transmission Protocol for WiMedia Distributed MAC Systems (WiMedia Distributed MAC 통신 시스템을 위한 UWB 링크에 적응적인 릴레이 통신 프로토콜)

  • Hur, Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.141-150
    • /
    • 2012
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, firstly, a time slot reservation protocol for relay transmission is proposed. Furthermore, we propose a novel relay node selection algorithm adaptive to current UWB link transmission rate. The proposed relay node selection algorithm has compatibility with current WiMedia D-MAC standard and is executed at each device according to the SoQ as a QoS criterion.