초고속 인터넷 서비스와 이동 통신의 발달, 그리고 Mobile Device 보급의 증가는 유비쿼터스(Ubiquitous) 기술의 발전을 촉진시키는 계기가 되었다. 와이브로 (WiBro, Wireless Broadband Internet) 시스템은 이동 중에도 무선 랜 (Wireless LAN) 보다 넓은 서비스 지원 영역에서 고속의 멀티미디어 서비스를 제공 받을 수 있는 MBWA(Mobile Broadband Wireless Access)기술이며, IP 기반의 백본 망(Backbone Network)로 구성된다. 이와 같은 무선 이동 통신 환경에서는 와이브로 시스템의 Layer 2(MAC Layer, Medium Access Control Layer)에서의 이동성 지원 기술뿐만 아니라 Layer 3(Network Layer)에서의 이동성 지원 프로토콜이 필요하며, 사용자가 이동 중에도 원활한 서비스를 제공받기 위해서는 핸드오버(Handovcr)의 지연 시간을 최소화 시켜야 한다. 따라서 본 논문에서는 IPv4 기반의 와이브로 망에서의 핸드오버 지연 단축 기법을 제안한다. 제안된 방법을 이동 단말(MS, Mobile Station)이 수신하는 신호 강도의 예측 값을 바탕으로 크로스 레이어 (Cross-Layer)기반의 고속 핸드오버 기법 (Fast Handover Scheme)을 적용하며, 지수평활법 (Exponential Smoothing Method)을 사용하여 예측 값을 계산한다. 모의 실험을 통해 기존의 방법과 제안된 방법을 비교, 분석하여 핸드오버 지연 시간의 단축을 증명한다.
본 논문에서는 IEEE 802.11a 무선 LAN의 이상적인 채널 환경과 페이딩 채널 환경에서 패킷의 페이로드 크기에 따른 MAC(Medium Access Control) 계층의 CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance) 기반 DCF(Distributed Coordination Function) 처리율을 비교 분석하였다. 이상적인 채널 환경인 경우 에러가 없는 채널을 의미하고, 임의의 전송 주기 동안 패킷을 전송하는 단말이 1개만 존재하며, 다른 단말은 패킷을 수신한 후 응답한다고 가정한다. 페이딩 채널 환경인 경우 채널상에서 비트 에러는 랜덤하게 발생되며, 단말수 n은 고정되고, 각각의 단말은 항상 전송 패킷을 가지고 있는 포화 조건(saturation condition) 하에서 동작된다고 한다. IEEE 802.11a 무선 LAN의 처리율을 구하기 위해 기존 연구에서는 주로 이상적인 채널 환경을 가정하여 최대 처리율을 구하였는데, 실제의 통신 환경은 페이딩 패널이므로 본 연구에서는 $E_b/N_o$를 25 dB, 부 채널에서 직접 수신된 신호와 산란되어 수신된 신호의 전력비 $\xi$는 복합 Rayleigh/Ricean 페이딩을 고려하여 6으로 정하였다. 분석 결과, 이상적인 채널 환경에서의 처리율에 비교하여 페이딩 채널 환경에서의 처리율이 모든 페이로드 크기에서 더 작아진다는 것을 알 수 있으며, 전송율이 증가할수록 이상적인 채널의 최대 처리율에 대한 페이딩 채널의 포화 처리율의 감소 비율이 더 커진다는 것도 알 수 있다.
무선 통신기술의 발전과 함께, 수중 통신 기술도 초기의 점대점 통신에서 벗어나 다수개의 노드를 연결하는 네트워크 구축으로 연구가 진행되고 있다. 수중의 통신환경은 전파지연, 도플러 효과, 다중경로, 그리고 전파손실의 측면에서 기존의 지상 무선 환경과 크게 차이가 있다. 따라서, 지상의 연구 결과가 수중에서 그대로 적용되기는 어려운 상황이다. 특히, 전파환경에 의존성이 큰 매체접속제어 프로토콜은 수중 통신망을 위해 새로 설계되어야한다. CSMA/CA는 데이터 패킷의 충돌을 피하고 숨겨진 노드 문제 등을 해결할 수 있으므로 이를 기반으로 한 여러 수중 매체접속제어 프로토콜들이 제안되어 왔다. 하지만 현실적으로는 RTS/CTS가 도달하는 전송범위 밖에서 발생한 간섭에 의해 수신신호의 성능이 저하되어 RTS/CTS의 효율이 감소될 수 있다. 본 논문에서는 수중 환경에서 전파반경 밖의 간섭 신호의 영향으로 인해 발생되는 신호대잡음비(SNR) 감소를 분석하여 RTS/CTS의 효율 감소를 도출하고, 기존 매체접속제어 프로토콜에 미치는 영향을 분석하였다. 또한, 수중 환경에서의 전파 간섭문제와 지상에서의 전파 간섭 문제를 비교 분석하여 지상과 차별화된 수중 통신환경에서 고려해야 할 사항들을 정리해 보았다.
최근 항공기내 전자장비 간의 유선 하네스를 무선 네트워크로 대체하고자 하는 많은 연구가 항공 산업체를 중심으로 진행되고 있다. 본 논문에서는 이러한 항공기내 무선 네트워크의 핵심 기반 기술을 검증하고 각 계층 기술을 효율적으로 통합 할 수 있는 이벤트 기반 시뮬레이터(ES-WAIC; Event-Based Simulator for Wireless Avionics Intra-Communications)를 개발하였다. ES-WAIC은 상위의 실시간 제어 응용 개발자와 네트워크 계층 개발자의 코드 가독성을 증대시키기 위하여 개발되었다. 특히, 실질적인 저전력 무선 임베디드 네트워크의 이벤트 기반 언어 방식을 구현하여 임베디드 시스템에 적용 할 수 있는 이식성과 호환성을 증가시켰다. ES-WAIC은 4.4GHz대역에서의 항공기내 무선통신 채널 모델링, PHY, MAC, Network, Application을 포함한 전반전인 계층이 구현되었다.
기존의 무선통신시스템에서는 무선채널에서의 데이터 전송 성능 향상을 위해 시스템 각 계층의 특성에 적합한 재전송 방식을 사용한다. 이때 재전송 방식은 해당 계층에서 독립적으로 동작하며, 무선통신시스템의 종단 간 성능에는 관계없이 각 계층별로 정해진 파라미터에의해 동작하게 된다. 이와 같은 파라미터는 무선통신시스템의 종단 간 성능을 고려하지 않기 때문에 한정된 무선채널자원 및 네트워크 자원을 효율적으로 활용하기 위한 최적의 시스템 파라미터를 설계하기 어렵다. 따라서 각 서비스 별로 정해진 종단 간 QoS(Quality of Service) 요구사항을 만족시키기에 적합한 재전송 방식의 파라미터를 설계하기 위해서는 무선통신시스템의 종단 간 성능 분석이 필요하다. 본 논문에서는 다 계층 재전송 방식을 사용하는 무선통신시스템의 종단 간 성능을 수학적으로 분석하고, 모의실험을 통해 MAC(Medium Access Control) 계층과 전송계층에서 데이터 전송 성능을 도출한다. 또한 성능평가 결과를 바탕으로 사용자에게 제공되는 각 서비스 클래스의 특성에 적합한 재전송 방식과 파라미터 값을 설정하도록 한다. 모의실험 결과, HARQ(Hybrid Automatic Repeat reQuest)와 AMC(Adaptive Modulation and Coding)를 결합한 방식의 경우 지연에 민감한 서비스에 유리하며, ARQ(Automatic Repeat reQuest)와 AMC를 결합한 방식은 평균 전송지연시간에 영향을 받지 않는 서비스에 유리하다. 또한 TCP(Transmission Control Protocol)는 지연에 민감하지 않은 서비스에서만 사용 가능하다.
수중 음파 센서 네트워크의 다각적인 발전에도 불구하고 네트워크상에서의 연결이 손실되는 경우가 여전히 존재한다. 특히 해양 환경에서 네트워크상의 연결 중에 발생할 수 있는 연결 단절을 유발하는 많은 다양한 문제점으로 인해 이를 보완하기 위해서 수중 음파 통신 네트워크를 위한 새로운 테스트 메커니즘이 필요하다. 본 논문에서는 통신 프로세스의 문제점 및 에러가 발생하는 위치를 식별하기 위해서 장애 없이 네트워크 배포시 가장 중요한 부분들에 대해 조사할 수 있는 방법을 제안한다. 수중 음파 통신 네트워크(UWASN)를 위한 Step-wised Out-test 메커니즘을 도입하고 실험을 통하여 out-test 기능을 이용한 수중 단말의 작동을 엄격하게 점검하였다. 구현 및 실험 결과를 통해서 Out-test 기능의 유용성 및 우수성을 입증하였고 향후 가능한 개선을 제시하였다.
무선통신망에서 단일 라디오와 채널의 사용은 무선 노드의 반이중 전송 및 경로의 내부간섭으로 통신망의 처리율 및 단대단 지연 특성을 저하시킨다. 또한, 채널경쟁기반의 무선통신망에서 임의노드 주변에 동일 채널을 경쟁하는 노드가 많으면 경쟁으로 인한 대역폭 감소와 전송 충돌로 인한 지연이 발생하여 통신망의 성능을 저하시킨다. 본 논문에서는 다수 라디오와 채널을 사용하여 무선노드의 전이중전송이 가능하게 하고 경로내부간섭을 배제할 수 있도록 라디오와 채널의 기능을 설정하고 큐잉이론의 해석모델을 이용하여 무선구간의 채널 경쟁 및 충돌을 반영한 무선구간 메트릭 ccf 및 ccf와 함께 채널변경지연, 경로내부간섭을 반영한 경로설정 메트릭 MCCR을 제안한다. MCCR과 MCR을 시뮬레이션을 사용하여 비교하였으며 MCCR을 사용하여 설정한 경로가 MCR보다 통신망 성능을 향상시키는 결과를 얻었다.
This paper presents an algorithm for multichannel slotted-ring topology medium access protocol (MAC) using in wavelength division multiplexing (WDM) networks. In multichannel ring, there are two main previously proposed architectures: Tunable Transmitter - Fixed Receiver (TTFR) and Fixed Transmitter - Tunable Receivers (FTTR). With TTFR, nodes can only receive packets on a fixed wavelength and can send packets on any wavelengths related to destination of packets. Disadvantage of this architecture is required as many wavelengths as there are nodes in the network. This is clearly a scalability limitation. In contrast, FTTR architecture has advantage that the number of nodes can be much larger than the number of wavelength. Source nodes send packet on a fixed channel (or wavelength) and destination nodes can received packets on any wavelength. If there are fewer wavelengths than there are nodes in the network, the nodes will also have to share all the wavelengths available for transmission. However the fixed wavelength approach of TTFR and FTTR bring low network utilization. Because source node with waiting data have to wait for an incoming empty slot on corresponding wavelength. Therefore this paper presents Tunable Transmitter - Tunable Receiver (TTTR) approach, in which the transmitting node can send a packet over any wavelengths and the receiving node can receive a packet from any wavelengths. Moreover, the self-similar distributed input traffic is used for evaluation of the performance of the proposed algorithm. The self-similar traffic performs better performance over long duration than short duration of the Poison distribution. In order to increase bandwidth efficiency, the Destination Stripping approach is used to mark the slot which has already reached the desired destination as an empty slot immediately at the destination node, so the slot does not need to go back to the source node to be marked as an empty slot as in the Source Stripping approach. MATLAB simulator is used to evaluate performance of FTTR, TTFR, and TTTR over 4 and 16 nodes ring network. From the simulation result, it is clear that the proposed algorithm overcomes higher network utilization and average throughput per node, and reduces the average queuing delay. With future works, mathematical analysis of those algorithms will be the main research topic.
본 논문에서는 트리 구조의 가입자 전달망인 APON(ATM passive optical network)에서 멀티클래스트래픽의 효율적인 전송을 위한 윈도우 기반 허락 분배 기법을 제안하였다. 제안된 기법은 상향 셀들의 다중화를 위한 허락 분배 과정에서 ATM 트래픽 클래스별 전송 특성을 고려함을써 각 트래픽 유형별 QoS를 보장할 수 있도록 설계되었다. 이를 위하여 상향 프레임의 주기적 요구 블록 (RAU)에 트래픽 유형별 요구 필드를 두고, 윈도우 기반 허락 분배 알고리즘을 수행하여 각 트래픽의 특성을 고려한 전송 허락이 이루어지도록 한다. 엄격한 전송 지연 성능을 요구하는 CBR/VBR 트래픽에 대해서는 Running-window 개념을 사용한 최소화할 수 있도록 하고, ABR 트래픽에 대해서는 CBR/VBR 허락 분배 후 여분 대역을 우선적으로 할당함으로써 전송 지연을 줄인다. 또한 대역 할당 후 남은 대역은 UBR 트래픽에게도 예약이 가능하도록 함으로써 망 자원의 이용률을 높일 수 있도록 하였다. 시뮬레이션을 통해 제안된 기법의 성능이 기존 프로토콜에 비해 우수함을 보였다.
본 논문에서는 원자력 안전등급 제어기기의 안전 통신망 구현을 위한 원자력 안전등급 통신 보드를 제안한다. 원자로 보호계통이 아날로그에서 디지털화되면서 디지털 통신망을 사용하게 되었다. 디지털 통신망은 원자력 안전등급에 사용되는 통신망으로 안전등급에서 요구하는 성능 및 시험을 통과한 통신보드가 제공되어야 한다. 통신 프로토콜 계층은 OSI 7 계층 중 물리계층, 데이터링크 계층, 어플리케이션계층만을 사용한다. 데이터 링크 계층에서는 사이버 보안을 위해 데이터 패키지를 변경하였다. 데이터 건전성을 위해 CRC32를 사용 하였으며 데이터 수신에 대해서는 재요청 및 응답을 하지 않는 단방향 통신만을 함으로써 원자력 안전계통에 영향을 주지 않게 설계 되었다. 또한 원자력안전등급을 획득하기 위해서 요건, 설계, 검증의 절차에 따라 설계하였다. 하드웨어검증을 위해 전자파 시험, 노화분석 시험, 육안검사, 번인시험, 내환경 시험 및 내진 시험과 같은 기기 검증을 수행 하였다. 또한 FPGA 펌웨어 검증을 위해 IEEE 1074의 생명주기를 준수하여 단위시험과 통합 시험을 실행 하였다[1-3].
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.