• Title/Summary/Keyword: M2M technologies

Search Result 656, Processing Time 0.028 seconds

Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology

  • Dongho, Lee;Seunghwan, Go;Jonghwa, Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.

Introduction of KIER Pyrolysis Process and 3,000 ton/yr Demonstration Plant (KIER의 열분해유화 공정 기술과 실증플랜트 소개)

  • Shin, Dae-Hyun;Jeon, Sang-Gu;Kim, Kwang-Ho;Lee, Kyong-Hwan;Roh, Nam-Sun;Lee, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.479-482
    • /
    • 2008
  • Since late of 2000, KIER has developed a novel pyrolysis process for production of fuel oils from polymer wastes. It could have been possible due to large-scale funding of the Resource Recycling R&D Center. The target was to develop an uncatalyzed, continuous and automatic process producing oils that can be used as a fuel for small-scale industrial boilers. The process development has proceeded in three stages bench-scale unit, pilot plant and demonstration plant. As a result, the demonstration plant having capacity of 3,000 tons/year has been constructed and is currently under test operation for optimization of operation conditions. The process consisted of four parts ; feeding system, cracking reactor, refining system and others. Raw materials were pretreated via shredding and classifying to remove minerals, water, etc. There were 3 kind of products, oils(80%), gas(15%), carbonic residue(5%). The main products i.e. oils were gasoline and diesel. The calorific value of gas has been found to be about 18,000kcal/$m^3$ which is similar to petroleum gas and shows that it could be used as a process fuel. Key technologies adopted in the process are 1) Recirculation of feed for rapid melting and enhancement of fluidity for automatic control of system, 2) Tubular reactor specially-designed for heavy heat flux and prevention of coking, 3)Recirculation of heavy fraction for prevention of wax formation, and 4) continuous removal & re-reaction of sludge for high yield of main product (oil) and minimization of residue. The advantages of the process are full automation, continuous operation, no requirement of catalyst, minimization of coking and sludge problems, maximizing the product(fuel oil) yield and purity, low initial investment and operation costs and environment- friendly process. In this presentation, background of pyrolysis technology development, the details of KIER pyrolysis process flow, key technologies and the performances of the process will be discussed in detail.

  • PDF

A Study on the Improvement of the Dye-sensitized Solar Cell by the Fiber Laser Transparent Conductive Electrode Scribing Technology (파이버 레이저 투명 전극 식각을 통한 염료감응형 태양전지 효율 상승 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Choi, Jin-Ho;Choi, Seok-Won;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2218-2224
    • /
    • 2010
  • Dye-sensitized solar cell (DSC) is a promising alternative solar cell to the conventional silicon solar cell due to several advantages. Development of large scale module is necessary to commercialize the DSC in the near future. A scribing technology of the transparent conductive oxide (TCO) is one of the important technologies on the fabrication of DSC module. A quality of the scribed line on the TCO has a decisive effect on the efficiency of DSC module. Among several scribing technologies, the fiber laser is a suitable for scribing the TCO more precisely and accurately because of their own characteristics. In this study, we try to improve the quality of the TCO scribed line by using the fiber laser. Consequently, the operating parameter of fiber laser is optimized to get the TCO scribed line with good quality. And the fiber laser scribing technology of the TCO is applied to the fabrication of the DSC with optimal operating parameter, operating current 3900mA. As a result, the current density and fill factor are improved and the total efficiency is increased because the internal resistances of DSC such as TCO sheet resistance and the resistance concerned to the electron movement in the $TiO_2$ are reduced. This is analyzed by the electrochemistry impedance spectroscopy (EIS) and the equivalent circuit model of the DSC.

A Competitive Core Technology Proposal for a Remodeling Project (경쟁력 있는 리모델링 공사를 위한 요소기술 도출)

  • Han, Ju-Yeoun;Kim, Ki-Hyun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.785-789
    • /
    • 2008
  • As people pays more attention to remodeling as a method to effectively improve, maintain, and manage building properties, it is important to ensure the economic feasibility of remodeling compared to reconstruction, instead of focusing on systematic regulations. In order to identify core technologies, the study set criteria to survey cost of a remodeling project by analyzing current status of remodeling projects. Based on the criteria, the study calculated average construction cost for five remodeling projects that were conducted recently, compared the cost with new construction projects, and examined major level works that are essential in a remodeling project. Based on the major level works, the study conducted interviews with construction experts to draw core technologies in design, structure and construction of a remodeling project.

  • PDF

A Study on the Mobile Communication Network and Practical use of Smart Phone for Building of Realtime Location Based Reservation System (실시간 위치기반 예약시스템 구축을 위한 이동통신망과 스마트폰 최적 활용에 관한 연구)

  • Kang, Sin-Kwan;Lee, Jeong-Bae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.283-294
    • /
    • 2012
  • Recently increasing usage of smart phones so, the application field of convergence industry between IT technology using smart phone-based mobile communication networks and other industry branches is expanding. In addition, R&D technologies in other fields are applied to smart phone applications effectively in order to develop products and support daily life more convenient. However, it is very hard to control these products and there is no efficient solution for this problem when many people are sent to specific area for big events, such as Biennale, Film Festival, EXPO, and so on. In order to solve this problem, this paper describes a network-based ticket reservation system and its organization using augmented reality on smart phone and mobile communication networks. In particular, we propose a method of designing and developing prototyping system based on smart phone application design technologies, prior to developing real smart phone application.

Enhanced extraction of copper and nickel based on the Egyptian Abu Swayeil copper ore

  • Somia T. Mohamed;Abeer A. Emam;Wael M. Fathy;Amany R. Salem;Amr B. ElDeeb
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.63-78
    • /
    • 2024
  • The continuous increasing of the global demand of copper and nickel metals raises the interest in developing alternative technologies to produce them from copper sulfide ore. Also, in line with Egypt's vision 2030 for achieving the sustainable socioeconomic development which aims at developing alternative and eco-friendly technologies for processing the Egyptian ores to produce these strategic products instead of its importing. These metals enhance the advanced electrical and electronic industries. The current work aims at investigating the recovery of copper and nickel from Abu Swayeil copper ore using pug leaching technique by sulfuric acid. The factors affecting the pug leaching process including the sulfuric acid concentration, leaching time and temperature have been investigated. The copper ore sample was characterized chemically using X-ray fluorescence (XRF) and scanning electron microscope (SEM-EDX). A response surface methodology develops a quadratic model that expects the nickel and copper leaching effectiveness as a function of three controlling factors involved in the procedure of leaching was also investigated. The obtained results showed that the maximum dissolution efficiency of Ni and Cu are 99.06 % and 95.30%, respectively which was obtained at the following conditions: 15 % H2SO4 acid concentration for 6 hr. at 250 ℃. The dissolution kinetics of nickel and copper that were examined according to heterogeneous model, indicated that the dissolution rates were controlled by surface chemical process during the pug leaching. The activation energy of copper and nickel dissolution were 26.79 kJ.mol-1 and 38.078 kJ.mol-1 respectively; and the surface chemical was proposed as the leaching rate-controlling step.

A Study on the Possibility of Using UAV Stereo Image for Measuring Tree Height in Urban Area (도심지역 수목 높이값 측정을 위한 무인항공기에서 취득된 스테레오 영상의 활용 가능성 고찰)

  • Rhee, Sooahm;Kim, Soohyeon;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1151-1157
    • /
    • 2017
  • Street Trees is an important object for urban environment improvement. Especially the height of the trees needs to be precisely measured as a factor that greatly influences the removal of air pollutants in the Urban Street Canyons. In this study, we extracted the height of the tree based on the stereo image using the precisely adjusted UAV Images of the target area. The adjustment of UAV image was applied photogrammetric SfM (Structure from motion) based on the collinear condition. We measured the height of the trees on the Street Canyon using stereoscopic vision on stereo plotting system. We also acquired the height of the building adjacent to the street trees and the average height of the road surface was calculated for accurate measurement of the height of each object. Through the visual analysis with the plotting operation system, it was possible to measure height of the tree and to calculate the relative height difference value with building quickly. This means that the height of buildings and trees can be calculated without making a 3D point cloud of UAV and it has the advantage of being able to utilize non-experts. In the future, further studies for semiautomatic/automation of this technique should be performed. The development and research of these technologies is expected to help to understand the current status of environmental policies and roadside trees in urban areas.

Improving CO2/CH4 Gas Separation Capability of Pore Controlled Activated Carbon Pellets through Chemical Vapor Deposition (화학기상증착법에 의하여 기공이 제어된 활성탄소펠렛의 CO2/CH4 가스 분리능 향상)

  • Eunseon Chae;Naeun Ha;Chaehun Lim;Chung Gi Min;Seongmin Ha;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.404-409
    • /
    • 2024
  • Technologies that separate and capture CO2 from landfill gas are attracting attention as a way to reduce CO2 emitted into the atmosphere. In this study, we aimed to improve the gas separation ability of CO2/CH4 mixed gas by controlling the pores of activated carbon pellets (ACPs) through chemical vapor deposition of CH4 and also investigated the adsorption characteristics as a function of reaction time. Both the specific surface area and the micropore volume increased up to a maximum of 997.8 m2/g and 0.392 cm3/g, respectively, following the carbon deposition through CH4. In addition, the CO2 adsorption quantity increased up to a maximum of 97.4 cm3/g as the deposition time increased. As a result, the pore structure of the ACPs could be controlled via the chemical vapor deposition of CH4 and the ACPs' CO2/CH4 gas separation performance was improved. The improved CO2 adsorption capacity was ascribed to an increase in specific surface area by heat treatment and an increase in the volume of below 0.61 nm micropores due to carbon deposition.

Design of the RF Front-end for L1/L2 Dual-Band GPS Receiver (L1/L2 이중-밴드 GPS 수신기용 RF 전단부 설계)

  • Kim, Hyeon-Deok;Oh, Tae-Soo;Jeon, Jae-Wan;Kim, Seong-Kyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1169-1176
    • /
    • 2010
  • The RF front-end for L1/L2 dual-band Global Positioning System(GPS) receiver is presented in this paper. The RF front-end(down-converter) using low IF architecture consists of a wideband low noise amplifier(LNA), a current mode logic(CML) frequency divider and a I/Q down-conversion mixer with a poly-phase filter for image rejection. The current bleeding technique is used in the LNA and mixer to obtain the high gain and solve the head-room problem. The common drain feedback is adopted for low noise amplifier to achieve the wideband input matching without inductors. The fabricated RF front-end using $0.18{\mu}m$ CMOS process shows a gain of 38 dB for L1 and 41 dB for L2 band. The measured IIP3 is -29 dBm in L1 band and -33 dBm in L2 band, The input return loss is less than -10 dB from 50 MHz to 3 GHz. The measured noise figure(NF) is 3.81 dB for L1 band and 3.71 dB for L2 band. The image rejection ratio is 36.5 dB. The chip size of RF front end is $1.2{\times}1.35mm^2$.

Analysis of SNPs in Bovine CSRP3, APOBEC2 and Caveolin Gene Family (소의 CSRP3, APOBEC2, Caveolin 유전자들의 단일염기다형 분석)

  • Bhuiyan, M.S.A.;Yu, S.L.;Kim, K.S.;Yoon, D.;Park, E.W.;Jeon, J.T.;Lee, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.719-728
    • /
    • 2007
  • The cysteine and glycine rich protein 3 (CSRP3), apolipoprotein B mRNA editing enzyme catalytic polypeptide‐like 2(APOBEC2) and caveolin (CAV) gene family(CAV1, CAV2, CAV3) have been reported to play important roles for carcass and meat quality traits in pig, mouse, human and cattle. As an initial step, we investigated SNPs in these 5 genes among eight different cattle breeds. Eighteen primer pairs were designed from bovine sequence data of NCBI database to amplify the partial gene fragments. Sequencing results revealed 9 SNPs in the coding regions of three caveolin genes, 1 SNP in CSRP3 and 3 SNPs in APOBEC2 gene. All the identified SNPs were confirmed by PCR-RFLP. Also, 9 more intronic SNPs were detected in these genes. However, all identified mutations in the coding region do not change amino acid sequence. Allelic distributions were significantly different for 5 SNPs in CAV2, CAV3, CSRP3 and APOBEC2 genes among the eight different breeds. These results gave some clues about the polymorphisms of these genes among the cattle breeds and will be useful for further searches for identifying association between these SNPs and meat quality traits in cattle.